
TREBALL DE FI DE GRAU

TFG TITLE: Development of a GUI for InterMineR and Cytoscape to make biological
databases FAIR.

DEGREE: Biomedical Engineering Degree

AUTHOR: Celia Sánchez Laorden

ADVISORS: Dr Rachel Lyne
Dr Gos Micklem

SUPERVISOR: Dr Santiago Marco

DATE: June 13, 2021

Títol: Creació d’una interfície gràfica d’usuari entre InterMineR i Cytoscape per fer
que les bases de dades siguin FAIR.
Autor: Celia Sánchez Laorden

Directors: Dr Rachel Lyne
Dr Gos Micklem

Supervisor: Dr Santiago Marco

Data: 13 de juny de 2021

Resum

InterMine és un sistema del tipus magatzem de dades que permet crear grans bases
de dades biològiques fàcilment des de fonts heterogènies en serveis web RESTful.
El sistema proporciona eines estadístiques i d’anàlisis de dades potents. InterMine
com a plataforma té una interfície web des d’on l’usuari pot fer cerques i incorpora
recursos especialitzats com mètodes d’anàlisis d’enriquiment de conjunts de gens.

InterMineR és una de les biblioteques informàtiques que dóna suport a la plataforma
des de l’entorn de programació de R Studio. En aquest projecte, s’han implementat
noves funcionalitats per permetre que l’usuari treballi amb col·leccions i conjunts de
dades creats des de el servei web, anomenats llistes. Les noves funcions han estat
incorporades i publicades en la nova versió del paquet a Bioconductor.

L’objectiu principal d’aquest projecte ha estat la creació d’una interfície gràfica d’usu-
ari (GUI) per fer cerques a les bases de dades d’InterMine i generar visualitzacions
de xarxes Cytoscape. S’ha desenvolupat un programari executable en entorns d’es-
criptori. Aquest permet als usuaris reduir la complexitat de les dades i extreure’n
significat amb fins de recerca. S’espera que permeti analitzar amb més profun-
ditat les fonts d’InterMine i augmentar-ne la FAIR (dades trobables, accessibles,
interoperables i reutilitzables en anglès).

Title : Development of a graphical user interface for InterMineR and Cytoscape to
make biological databases FAIR.
Author: Celia Sánchez Laorden

Advisors: Dr Rachel Lyne
Dr Gos Micklem

Supervisor: Dr Santiago Marco

Date: June 13, 2021

Overview

InterMine is a biological data warehousing system for creating large biological
databases of heterogenous data sources easily in RESTful web services. It provides
powerful statistical and analysis tools. InterMine as a platform has a web interface
in which user can run searches and incorporates specialized resources such as
enrichment statistics.

InterMineR is one of the software ’client’ libraries that interfaces the biological
databases built using the InterMine platform with a programming environment, in
this case R. In this project, new functionalities have been implemented to enable the
user to work with stored collections of data and saved results sets created from a
web-service, called lists. The new functions have been merged and published in the
new Bioconductor version of the package.

The main aim of this project is to create a graphical user interface (GUI) to query
the InterMine databases and generating Cytoscape network visualizations. We
developed a software that runs on desktop environment. It allows users to reduce the
complexity of the data and extract meaning from it. It will allow data in InterMines
to be further analysed - increasing its FAIRness.

First of all, I would like to show appreciation to Dr Gos Micklem, for giving me the
opportunity to conduct this project in his Lab.

I would like to express my most sincere thanks of gratitude to Dr Rachel Lyne for
her guidance, advice and assistance. This work would not have been possible

without her intense commitment and dedication.

I cannot fail in my remarks to express appreciation for the coworking with
Yo Yehudi, Daniela Butano and Adrián Bazaga.

Finally, I would also like to thank to
Dr Santiago Marco, for his advice and support.

CONTENTS

Project Origin and Motivation . 1

CHAPTER 1. Introduction . 2

1.1. Scope . 2

1.2. Span . 2
1.2.1. Description of the span of the project 3

1.2.2. Requirements of the project . 3

1.2.3. Limitations of the project . 4

1.2.4. Deliverables of the project . 5

1.2.5. Criterion of acceptation of the results 5

1.2.6. Restrictions of the project . 5

1.2.7. Initial known risks . 6

CHAPTER 2. Background . 7

2.1. State of the art . 7
2.1.1. InterMine as a Data Warehouse . 7

2.1.2. Setting up an InterMine: making data FAIR 8

2.1.3. Cytoscape: graph analysis software 9

2.2. Project Environment . 10

CHAPTER 3. Scan of the Market . 11

CHAPTER 4. Design Engineering . 13

4.1. Improvements of the core InterMineR R package 13
4.1.1. Preliminary Project Study . 13

4.1.2. Proposed Solution . 13

4.2. Interfacing with Cytoscape . 14
4.2.1. Preliminary Project Study . 14

4.2.2. Proposed Solution . 14

4.3. Tutorials . 15
4.3.1. Preliminary Project Study . 15

4.3.2. Proposed Solution . 15

4.4. Documentation . 15
4.4.1. Preliminary Project Study . 15

4.4.2. Proposed Solution . 16

CHAPTER 5. Detail Engineering . 17

5.1. Technologies involved . 17

5.2. Design . 19
5.2.1. Improvements of the core of InterMineR 19

5.2.2. Interfacing InterMineR and Cytoscape with Shiny 23

5.2.3. Set Query Tab . 25

5.2.4. Run your Query Tab . 28

5.2.5. Visualize your Results Tab . 28

5.2.6. Overlay Additional Data Tab . 30

5.2.7. Saved Networks tab . 31

5.2.8. Customer Support . 32

5.2.9. GitHub Repository . 33

5.3. Results . 33
5.3.1. Improvements of the core of InterMineR 33

5.3.2. Use cases for the InterMineR-Cytoscape Shiny Interface 35

CHAPTER 6. Organization . 41

6.1. Technique pre-feasibility study . 41

6.2. Schedule of Execution . 42

CHAPTER 7. Economic pre-feasibility study . 43

7.1. Cost study . 43

CHAPTER 8. Environmental Impact . 45

CHAPTER 9. License . 46

CHAPTER 10. Future Extensions . 47

Conclusions . 48

Bibliography . 49

APPENDIX A. Task 1: Improving InterMineR 2

A.1. Classes . 2
A.1.1. ListManager-class.R . 2

A.1.2. webservice-class.R . 2

A.1.3. InterMineR-class.R . 2

A.2. Methods and Functions . 3
A.2.1. initInterMine . 3

A.2.2. list_manager . 3

A.2.3. ListManager-methods.R . 3

A.3. Documentation . 7
A.3.1. ListManager-class.Rd . 7

A.3.2. ListManager-class documentation rendered to HTML. 9

A.4. Results . 10

APPENDIX B. Task 2: Shiny Interface . 23

B.1. Welcoming message . 23

B.2. Interface simplified code . 23
B.2.1. Simplified code of the app.R script structure 23

B.2.2. Simplified code of the tab dashboard structure of: 25

B.3. InterMineR fragments of code . 26
B.3.1. Selecting the InterMine and getting the data model: initInterMine,

listMines, getModel . 26

B.3.2. Get the information of the templates pre-defined in InterMine and get
the query obtained in a template: getTemplates, getTemplatesQuery 26

B.3.3. Constraints: setConstraints . 27

B.3.4. Initialize a new InterMineR query or modify an existing list query:
setQuery . 29

B.3.5. Get the summary of constraints: summary 29

B.3.6. Get the results: runQuery . 30

B.4. Cytoscape fragments of code . 31
B.4.1. Visualize tab . 31

B.4.2. Overlay tab . 35

B.4.3. Saved Networks tab . 46

B.5. User guide . 47

APPENDIX C. Use-cases for the InterMineR-Cytoscape Shiny In-
terface . 56

C.1. HumanMine use-case. 56
C.1.1. Workflow A: . 56

C.1.2. Workflow B: . 57

C.2. CovidMine use-case. 75
C.2.1. Countries without continents nodes. 78

C.2.2. Only continents. 81

APPENDIX D. Supplementary graphics 83

D.1. Scan of the Market for Biological Data-Warehouses 83

D.2. Improvements of the core InterMineR package. 84

D.3. Work Breakdown Structure . 84

LIST OF FIGURES

5.1 Operations with lists. 19
5.2 HTTP request/response model. 20
5.3 Workflow for the Shiny Interface. 23
5.4 Layout divided into Header, Sidebar and Body. 24
5.5 Second Layout configuration with a Conditional Panel. 24
5.6 Diagram of the Template tab. 26
5.7 Screenshot of the Query Builder tab. 26
5.8 Diagram of the Query Builder tab. 27
5.9 Diagram of the Query Builder tab. 28
5.10Diagram of the Visualize your Results tab. 29
5.11History of Changes modal dialog where changes can be seen and deleted. 30
5.12Diagram of the Overlay Additional Data tab. 31
5.13Diagram of the Saved Networks tab. 32
5.14Results of queries: diabetes genes (left) and Pax6 targets that have high

expression in the Pancreas (right). 33
5.15Your Lists tab in MyMine space from HumanMine. 34
5.16List Analysis for GWAS page showing the two genes resulting from the

intersection. 35
5.17Networks of the Workflow A (see them bigger in C.14). 36
5.18Customized network of Workflow A. 37
5.19Size gradients for the genes involved in Type 1 Diabetes Mellitus. 38

6.1 SWOT Analysis. 41
6.2 TOWS Analysis. 41
6.3 GANTT Chart. 42

C.1 Global view of the Template Queries tab. 56
C.2 Choosing the Template Query. 56
C.3 Summary of the constraints defined in the Template Query. 57
C.4 Table of results and selection of nodes, edges and nodes’ attributes. 57
C.5 Initial view of the Visualize your results tab. 58
C.6 Cola layout and saving an image of the entire network. 58
C.7 "Zoom selected" view of the node OMIM:125853 and first neighbours. . . 59
C.8 "Zoom selected" view of the first neighbours of the previous selection C.7. 59
C.9 Invert selected of the previous selection C.8. 60
C.10Remove selected of the previous selection C.9. 61
C.11Show all the nodes. 62
C.12First neighbours of OMIM:125853 network saved as an image. 62
C.13The directory where the image C.12 has been saved. 63
C.14Networks of the Workflow A. 63
C.15Initial view of the Overlay additional data tab. 64
C.16Customization of the genes related with Diabetes Mellitus Type 2. 64
C.17Results of the orange background-colour filter C.16. 65
C.18Customization of the genes related with Diabetes Mellitus Type 1. 65

C.19Saving the customized network. 66
C.20Displaying the saved network C.19 in the Saved Workflows tab. 66
C.21Query Builder view of first level data class and the constraint for Dis-

ease.name. 67
C.22Query Results view and selection of target and source data. 67
C.23Cytoscape Network Viewer of the results. 68
C.24Size gradient of expression score for the genes expressed in Diabetes

Mellitus Type 1. 68
C.25Second constraint in the Query Builder for Gene.symbol. 69
C.26Summary of constraints. 69
C.27Query Results view and selection of target and source data. 70
C.28Background-colour overlaying. 70
C.29History of Changes. 70
C.30Size gradient of expression score for different tissues. 71
C.31Summary of constraints. 72
C.32Size gradient of expression score for the IL6 gene. 72
C.33Summary of constraints. 73
C.34Size gradient of expression score for the ITPR3 gene. 73
C.35Summary of constraints. 74
C.36Size gradient of expression score for the PTPN22 gene. 74
C.37Summary of constraints of the template query modified (new value for date). 75
C.38Query Results and selection of target and source data. 75
C.39The node 2021-04-14 and its first neighbours are selected. 76
C.40Inverted selection of C.39. 76
C.41Removing the nodes from C.40 selection and saving the results. 77
C.42Size gradient of new confirmed Covid-19 cases on 14-04-2021. 77
C.43Selection of continents. 78
C.44Removing the nodes from C.43 and saving the results. 78
C.45Size gradient of new confirmed Covid-19 cases on 14-04-2021 without

continents. 79
C.46Colour gradient (date: 14-04-2021). 80
C.47Size gradients (date: 14-04-2021). 81
C.48Size gradient of new confirmed Covid-19 cases on 14-04-2021 in the conti-

nents and background-colour overlaying seen in the History of Changes
window. 81

C.49Displaying the network saved in C.48. 82

D.1 Auxiliar scheme of the methods and classes to implement. 84
D.2 Work Breakdown Structure. 84

LIST OF TABLES

1.1 Limitations . 4

5.1 R packages. 18

7.1 Labour costs. 43
7.2 Hardware costs. 43
7.3 Final cost of the project. 44

8.1 Development estimate CO2 emission. 45

D.1 Comparison between BioMart, EuPathDB, BioCyc and Intermine. 83

PROJECT ORIGIN AND MOTIVATION

This thesis was developed during an internship carried out the summer 2020 at
the Department of Genetics of the University of Cambridge. The work done here is
regrouped in a central project called InterMine, a data warehouse system, and has
been supervised by Senior Biologist Rachel Lyne. From September 2020 to April
2021, this project has been extended and written.

During the last decade, a plethora of tools have been developed to explore research
data from large biological databases. In particular, the development of software
’client’ libraries in common programming languages to access the data is a must. The
R programming stands out above the rest for its powerful statistical and graphical
capabilities in the field of data science. The ’client’ library InterMineR provides
access to the InterMine databases through webservices and makes it possible to run
complex data mining searches.

Having access to large databases is as important as having the tools to analyse them,
as they are complex and heterogeneous. In particular, when complex interactions are
considered, the creation of a network of multiple pathways of interest can bring out
underlying biology. In this regards, InterMine team considers Cytoscape a powerful
visualization tool that would increase the interoperability of the biological databases.
Thus, giving to the users the resources to make their research data more Findable,
Accessible, Interoperable and Reusable (following the FAIR principles).

In this project, it has been wanted to cooperate with the evolution of biological data
integration and management. During the project, the InterMineR R package has
been extended to enable the users access data directly from their computers without
using the InterMine web application and communicating with the server through
the R Studio interface. And, finally, it has been created a graphical user interface
to querying the data of any of the InterMine databases and show the results in
Cytoscape networks. All the new functions and tools have been properly documented
with the purpose of making them more user-friendly.

Open source software promotes the development of powerful tools which we are
reliant on, in our day-to-day. The work done here wants to be a little contribution
back to the open-source community.

1

CHAPTER 1. INTRODUCTION

1.1. Scope

The main objective of this project is to contribute to the improvement of the InterMine
platform[1]. InterMine is a widely used large-scale data integration platform for
biological data. It has a web interface but also programming interfaces for all the
main scripting computer languages (Python, R, Perl, JavaScript, Ruby or Java). This
project is focussed on the InterMineR package and Cytoscape.

InterMine was created in 2002 at the University of Cambridge, originally as a
Drosophila-dedicated resource, before expanding to become organism-agnostic. This
has enabled the creation of many InterMines such as FlyMine, HumanMine and even
a CovidMine. The InterMine team is part of the Micklem lab, headed by Professor
Gos Micklem.

All InterMine code is freely available under the open source LGPL 2.1 license. All
the information given when using the platform is treated in accordance with its
privacy statement that can be read it in its website.

The following specific objectives have been identified in order to reach the first aim:

1. To improve the core InterMineR package.

2. To improve the integration of Cytoscape with R within InterMine.

3. To provide documentation and tutorials.

Other aspects such as improvements in the data browser tool, in client libraries or
other visualization tools like MineViewer or Bluegenes for the improvement of the
InterMine platform are not going to be consider in this project. InterMine is a big
open source project and has many contributors working on it at the same time. In
its GitHub can be found many repositories that need contribution in different issues.

The execution of this project is going to be carried out during the summer break under
the remotely supervision of Dr Rachel Lyne, Ms Yo Yehudi, Ms Daniela Butano and
Mr Adrian Rodríguez, from the Genetics Department of the University of Cambridge
via email, Discord and Zoom. The internship entails a dedication of 36.5 hours per
week for 8 weeks. After the final version of the software, some time will be devoted
to refine and document all the work for the end-of-degree project presentation. The
posterior drafting and finally the presentation of the end-of-degree project will be
supervised by Dr Santiago Marco from the University of Barcelona.

1.2. Span

It is expected to improve the core InterMineR package and interface it with Cy-
toscape.

2

http://intermine.org/
http://intermine.org/
https://github.com/intermine/InterMineR
https://cytoscape.org/
https://test.intermine.org/covidmine/begin.do

CHAPTER 1. INTRODUCTION 3

• Improvements of the core InterMine R package: Including missing functions
that would make it easier for users to work with lists: getLists, newList,
renameList and deleteList, initially. Lists objects are widely use in InterMine
providing to the user information about a large set of bio-entities and facilitates
powerful statistical analysis such as the gene set enrichment.

• Interfacing with Cytoscape: Cytoscape is a popular open source tool used to
visualise biological data as a network or graph. Interfacing between Inter-
MineR and Cytoscape software will involve running queries in R against data
in InterMine databases and then “sending” it to the Cytoscape for visualisation.
To make this easier for users an R shiny interface will be created.

Once finished, the data will be explored with the included applications coming up
with some use-cases. User guideline for the interfacing between InterMineR and
Cytoscape will be created.

1.2.1. Description of the span of the project

It is expected that the result incorporates all the necessary functions to the core of
the InterMineR to make it easier for users to work with list objects. And so, if any
other function appears to be useful, they will be incorporated extending InterMineR
to provide the same functionality that InterMine has for the other languages such
as Python.

Lists store collections of data and saved result sets from a web service. They are
created from a list of identifiers or from a query result. This result can be obtained
from a template query, a pre-defined search, or a personalize search made by the
user using the InterMine’s custom query builder.

Cytoscape is available as a stand-alone program, as a web version and as an R
package. It will be desirable to create a R shiny user-friendly graphical interface for
users to run queries with InterMineR and then visualise the results with Cytoscape
in node/edge graph-based visualisations and obtain networks of proteins or genes,
for example. This interface will be complemented with use-cases.

1.2.2. Requirements of the project

To accomplish the objective of interfacing Cytoscape and InterMineR, the resulting
work must feature certain functionalities. These basic requirements of the functions
and interface must carefully be considered during the design process.

The requirements can be summarized in the following points:

• Mines compatibility: The user can access all the Mines available in a single
user interface. This way, the user can explore a broad range of organisms and
life science research areas by moving between databases.

• Query Builder: The user should have the possibility to choose a template query
from a list of all the templates for an organism or mine. And on the other hand,
the user should be able to build the query itself.

4 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

• Interactive and intuitive visualizations: Tools to facilitate the visualization and
comprehension of the results are provided. The resulting Cytoscape networks
can be edited by the user. Guidance edition tools are also desired to make the
edition task easier.

• Dynamic and reactive user interface: The user interface changes dynamically
in response to changes in the input controls, made by the user.

• Versatility: The application must be designed to be executed in any computer
by any user with few installation requirements. Only desktop environments
are expected to run this application; no mobile device is considered.

The following are the requirements of the project that have not been mentioned
previously:

• All the code written will be documented and modularised.

The following requirements are for the end-of-degree project:

• Drafting and submission of the written project.

• Presentation of the work to the Court of the University. The final work must
be well presented to the audience.

1.2.3. Limitations of the project

Included Excluded

In
di

sp
en

sa
bl

e

– Extend InterMineR with functions to work with lists:
getLists, newList, renameList and deleteList.

– Interface InterMineR and Cytoscape to build up
node/edge graph-based visualisations.

– Document the written code.

– Create tutorials for the Cytoscape functionality.

– Fixing the error of get-
Model function in Fly-
Mine or HumanMine.

– Perform list operations:
difference, subtract, in-
tersect, etc.

– Fetch a list by name
function.

D
es

ir
ab

le

– Extend InterMineR core with other functions.

– R Shiny interface for the interfacing between Inter-
MineR and Cytoscape.

– Provide use-cases in the tutorials.

– In the function run-
Query() a parameter
like "return.no.matches"
that gives you the
non-mapped names.

Table 1.1: Limitations

https://github.com/intermine/InterMineR/issues/63
https://github.com/intermine/InterMineR/issues/63
https://github.com/intermine/InterMineR/issues/56
https://github.com/intermine/InterMineR/issues/56
https://github.com/intermine/InterMineR/issues/70

CHAPTER 1. INTRODUCTION 5

1.2.4. Deliverables of the project

Regular Zoom calls will be set up with the Micklem’s lab, weekly initially or more
often if needed to discuss the work. Once each section of the first work is completed,
Dr Rachel Lyne and Ms Yo Yehudi (from Micklem’s lab) will review it and merge
it into the master project following an incremental, but linear, build model. For
code review GitHub will be used. For the building of the Shiny interface the Agile
methodology will be followed. This is a combination of iterative and incremental
work sequences with focus on adaptability and client satisfaction. It begins with
planning and continues through iterative development cycles that involve continuous
user feedback and the incremental addition of features.

InterMine has a server in Discord with different channels or chats. There is a general
channel, where public discussions are taken between all the members, and a support
channel, where any developer can post a doubt and the others will help. For this
project, a private channel will be opened with the supervisors.

1.2.5. Criterion of acceptation of the results

The main criterion is the gain of the functionality described in the span of this
project. Once each contribution, in the form of a pull request, in a section has been
reviewed by the maintainers (Yo, Daniela and Rachel), it will be added or merged to
the IntermineR repository master branch.

Other criteria for acceptance (that could be used) are:

• Passing unit test for new code (if applicable).

• Passes all tests – according to Travis CI.

• Documentation (if applicable).

• Detailed commit messages.

• Well commented code.

• Checkstyle.

1.2.6. Restrictions of the project

This project was initially plan as an internship abroad but due to COVID-19 it will
be done remotely. This modality of work can be a factor of risk for correct execution
of the project. For that reason, it will be essential to control and reinforce the
communication.

The second restriction will be the time for executing the project. Since part of the 8
supervised weeks will be devoted to document (myself) before starting programming
as the developer (I) does not have previous experience of all the involved tasks.

6 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

1.2.7. Initial known risks

Having little experience working with InterMine queries could delay the anticipated
completion of this part. Moreover, having never worked with Cytoscape leads to a
learning process to be able to merge it with InterMineR.

The COVID-19 situation makes compulsory teleworking. For the supervision of
the work and the correctness of it, not being physically present is a risk as the
communication will be less fluent and problem-solving is assumed to be slower.

Finally, working beyond the deadline of the internship will not be desirable.

CHAPTER 2. BACKGROUND

2.1. State of the art

2.1.1. InterMine as a Data Warehouse

A data warehouse is a storage area for collecting data which may have been gathered
from a source or multiple sources via an integration layer that transforms data
to meet the criteria of the warehouse. In a centralized data warehouse such as
InterMine, since data is unified and in homogeneous format, queries are easier to
write and gives user better performance than accessing multiple distributed data
warehouses.[2]

Many biological data management systems or data warehouses have been developed
to integrate huge amounts of this data in one place. Each of them is appropriate
for different scenariosAnd some examples are BioMart, The Eukaryotic Pathogen
Databases (EuPathDB) and BioCyc.[3]

A short summary of the main biological warehouses is given below, they are presented
and described in chronological order of realisation.

One of the oldest found data warehouses is BioCyc[4], released in 1997. It is a
collection of more than 3000 organism-specific Pathway/Genome databases (PGDBs),
and is particularly focussed on microbes. Among the tools it offers there are Omics
Viewers. Three years later appeared GIMS[5] to support the analysis of genomic
data with the construction of canned queries that can be reused. In 2004, the
ONDEX[6] framework was registered. Currently, it offers an environment for text
mining, large scale database integration and graph analysis highly functional tools
for genes, genomes, and proteins. A strength is that all data that are relevant for a
given analysis is extracted from any combination of integrated databases and text
sources and no a priori knowledge and pre-selection of databases is required. Almost
simultaneously, GUS[7], Biozon[8], BioWarehouse[9] and Atlas[10] appeared.
GUS was specialized in functional genomics but could be generalized to the rest of
omics and clinical records. Biozon unified DNA sequences, proteins, interactions,
and cellular pathways and was able to store functional predictions. BioWarehouse
approach was more about general bioinformatics research, enabling multi-database
queries and data mining of relevant data sets. Atlas, based on relational data
models and very similar to BioWarehouse, integrated biological sequences, molecular
interactions, homology information, functional annotations of genes, and biological
ontologies. In those days, BioMart[11], and one later, EuPathDB[12] were realised.
The first one was an effort to integrate over 800 biomedical databases of genomics,
proteomics, model organisms, cancer data ontology and more. While the second was
specialized in genomic and postgenomic data from eukaryotic pathogens along with
non-pathogenic species and select pathogen hosts. Both query strategies were based
on predefined searches or filters. And again, both support many third packages for
visualization purposes such as Cytoscape. Finally, it can be remarked two more data
warehouses that appeared in 2009 and 2012, respectively, BioXRT and OGeR[13].
BioXRT does not support data mining but offers an easy path for scientist to develop

7

8 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

their own databases. OGeR was restricted to prokaryotic genome data although
it does not provide tools for clustering and statistical analysis nor does it provide
advance mining tools. OGeR and BioXRT are no longer available. Same happens
with GIMS, Atlas, GUS and Biozon. BioWarehouse was shut down in 2015 but the
source code is still available for download. BioMart, EuPathDB, BioCyc and Ondex
are still updated in 2020.

While Ondex version must be downloaded and requires a Java run time environment,
BioMart, EuPathDB and BioCyc offer a web server. Ondex has a ToolKit user
interface for visualization of networks, the ONDEX frontend, and another for data
integration and data mining, ONDEX backend. The second is only advisable for
advanced users and developers.

BioMart offers programmatic access through Perl and Java API’s, RESTful web
services and SPARQL, and as mentioned before its web interface. It is also a cross-
platform that supports many third-party packages such as Galaxy, Cytoscape and
biomaRt, which part of the Bioconductor library.

EuPathDB includes 13 web pages following the same web site structure. This offers
rich data mining capacity supported by the Genome Browser and a private Galaxy
workspace for visualization and primary data analyses, respectively.

BioCyc website offers querying and analysis tools such as omics data analysis,
metabolic map diagrams and models, pathway collages, regulatory network dia-
grams, comparative analysis, and BLAST search. In addition, a downloadable
software/database bundle includes functionality not available in the web server and
executes faster. The API allows to query via Java, Perl, and Common Lisp languages.

In the Scan of the Market section is going to be compared BioMart, EuPathDB and
BioCyc with InterMine.

2.1.2. Setting up an InterMine: making data FAIR

Making data FAIR means making data Findable, Accessible, Interoperable and
Re-usable. The principles of FAIR were first formally published in Scientific Data in
2016[14]. InterMine currently has funding to increase it’s conformance to the FAIR
data principles, by the BBSRC Council.

Currently, the accessibility to the data is guaranteed through web apps, web services
and client libraries for the most common languages and by a very sophisticated
query system. The usability and interoperability is provided by the exportation of
the results in different formats. And reproducibility is also ensured by the automatic
code generation function that reproduces the code in different languages of a concrete
specified query. Other way to access the data is through visualization tools. Along
these lines, Blue Genes GUI is designed to make searching and analysing genomic
data easy. In this way, the project of interfacing InterMineR and Cytoscape aims
to be a modest contribution to making InterMine FAIRer. Contributing to the
interoperation and reusable aspects of FAIR, by allowing two software components
to interoperate and scripts to be saved allowing researchers to easily re-create
analysis workflows.

Aspects aimed at improving the FAIRness of InterMine include permanent access

https://www.bioconductor.org/packages/release/bioc/html/RGalaxy.html
https://www.bioconductor.org/packages//2.13/bioc/html/RCytoscape.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html

CHAPTER 2. BACKGROUND 9

URLs, mark-up of web pages for machine findability and improvements in ontology’s
usage and license information. These improvements have been implemented with
success. However not all data within InterMine has a data license and efforts will
continue in this area. Another project aims to help transform research data files into
cloud hosted InterMine databases. InterMine Cloud project attempts to lower the
barrier of setting up an InterMine instance for researchers with little programming
knowledge. As a part of InterMine Cloud, InterMine Boot aims to allow user to setup
locally InterMine instances.

From the data warehouses mentioned in the previous section, EupathDB has associ-
ated a BRC project names Eukaryotic Pathoge, Vector and Host Informatics Resource
(VEuPathDB) that declares to follow FAIR principles. It is limited to eukaryotic
pathogens and invertebrate vector of infectious diseases, including data from prior
projects of parasitic species (EupathDB), fungi (FungiDB) and vector species (Vector-
Base). VEuPathDB helps scientist to submit genomic-scale data related with the
mentioned fields. Looking at the databases in FAIRsharing, a platform that ensures
that databases among others are aligned with FAIR data principles, five BioCyc’s
are found.

2.1.3. Cytoscape: graph analysis software

The growth in high-throughput genomics, transcriptomic and proteomic techniques
has led to an explosion in large biological data sets. This provides a challenge
in how best to analyse and visualise these data. Networks provide a good way
to visualise such data, enable patterns and relationships in the data that can be
explored. Focusing on network visualization tools that are free, open-source and
have developer packages available in programming languages such as R, five are
presented below.

Gephi[15] is highly interactive, and users can easily edit the node/edge shapes
and colours to reveal hidden patterns. It assists users in pattern discovery and
hypothesis making through efficient dynamic filtering and iterative visualization
routines. It stands up in terms of scalability and memory efficiency, being a great tool
for layouting large-scale network (nodes 104, edges 106). Also, for large-scale network
visualization, Tulip[16] is one of the easiest-to-use tools due to its simplicity and
guided interface. It offers enabling edge-bundling algorithm. For massive networks
with more than 10 billion nodes, Pajek[17] is the best scalable tool. However, it
lacks operating system interoperability and input file format flexibility and not good
visualization features compared with others. Not all offer interactive user experience,
this is the case of GraphViz[18] which runs from the command line. It focusses on
2D graph layout algorithms to provide a static aesthetically pleasing view of the
network.

It is not easy to compare these tools with each other as they serve different purposes.
Nonetheless, Cytoscape[19] is the most preferred tool for biological and biomed-
ical analyses, as illustrated in the statistics of publications for the tool[20]. It is
accompanied by more than 200 plugins, which are additional features available as
Apps. Compared with the rest, it has the richest palette of predefined colour styles,
the most efficient collection of clustering algorithms (layouts), and the best network

10 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

profiler for intranetwork comparison of topological features as indicated by the large
number of citations it recieves. Moreover, it is an extensible software, meaning that
it can be grown and implement an extension[21]. Indeed, the most used extension is
the Cytoscape.js JavaScript library[22]. Cytoscape.js is an API and the successor of
Cytoscape Web. It is designed to be a building block for complex data visualization
web applications. Its interoperability is relevant when combined with network data
generated by igraph, which can be programmed in R, Python, Mathematica, and
C/C++.

2.2. Project Environment

This project aims to be a continuity of the work carried out by Bing Wang and
then modified and extended by Konstantinos Kyritsis on the InterMineR package.
There are several additions that could still be made to the package to cover all the
functionality currently available through the webapp. These improvements are
geared to facilitate working with lists.

In addition, there is the opportunity to integrate the graph-drawing package, Cy-
toscape, with R Shiny and InterMine. As mentioned before, tools to set analysis and
visualizations directly available from an InterMine increases its FAIRness.

https://github.com/intermine/InterMineR

CHAPTER 3. SCAN OF THE MARKET

As stated, biological data warehouses are a powerful research tool in bioinformat-
ics and biotechnology. In bioinformatics, data warehousing can help biologists to
select and design critical experiments. In biotechnology, transformation of data to
knowledge also called knowledge discovery from databases (KDD) is a goal for users.
KDD can be defined as the “non-trivial extraction of implicit, previously unknown
and potential useful information from data”[23]. These are only some of the ap-
plications of datawarehousing in biology research. And as applications evolve, the
data warehouses available in the market do so as well. As it has been summarized
in the State-of-the-Art section, currently, the more well-known are BioMart, The
Eukaryotic Pathogen Databases (EuPathDB) and BioCyc.

The future work of those is heading towards promoting the collaboration and code
reuse in a context of open-source software. One of the specific goals is to make users
participate actively in the process of building the databases for the data warehouse
and indirectly expand the data further over the coming years. Moreover, graphic
visualizations are a common working aspect for future releases.

To explore the position of InterMine, and detect its hallmarks, a comparison between
BioMart, EuPathDB, BioCyc and InterMine is presented in the appendix D.1.

For BioMart community portal as it is temporarily unavailable, further information
is provided from one of the BioMart community servers, Ensembl[24]. The list of
those servers is listed in its website.

Following with BioMart, the Cytoscape Core App provides support for BioMart web
service in Cytoscape.

From Table D.1 in appendix can be concluded that each data warehouse has its sector
in which stands out. The biggest data warehouse in number of species is BioCyc
followed by EuPathDB. Both also offer good analysis tools. However, InterMine is
the unique offering the possibility to customize from scratch a search or a query and
automatically give the code of this query in many programming languages. Moreover,
InterMine is offering API’s in more programming languages and developing an R
package that will improve the visualization of the results with Cytoscape. Currently,
it is also developing other tools for visualization. Finally, InterMine aims to provide
the tools to the clients for developing their own InterMine app and so expand the
platform. For this reason, it is also offering a lot of tutorials and paths to customize
the InterMine apps and websites.

Several applications designed for network analysis and the creation of network
graphs such as gephi and graphviz exist. Although not specifically designed for
it, R can be powerful tool for the same purpose. Comparing R with the isolated
network analysis software’s that have been described previously, R presents a clear
advantage. Firstly, R enables reproducible research not possible with the other
applications. Secondly, R represents a powerful data analysis tool to manipulate
data and prepare it for network analysis. And finally, packages such as igraph,
gggraph, graphlayouts or snahelper are growing making even more complete R
network analysis. The features and functionality of the stand-alone software’s
described are already available through R libraries. For example, this is the case of

11

http://www.biomart.org/notice.html

12 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

rgexf package for Gephi or DiagrammeR for Graphviz. However, the most completed
and diverse packages are the ones devoted to enhancing the interoperability of
Cytoscape and R[25][26]. Finally, the combination of Shiny apps with packages for
Cytoscape Interactive Graph Visualizations is being explored by data scientists for
no more than two years, although the building of the R packages comes further in
time.

CHAPTER 4. DESIGN ENGINEERING

4.1. Improvements of the core InterMineR R package

4.1.1. Preliminary Project Study

In this part, it is expected to improve the functionalities of the InterMineR package
to work with lists. This has been done for the InterMine Java, Perl, Python and
JavaScript packages. The InterMine functionality is exposed over an HTTP API
(RESTful) and the Client Libraries, or packages, are close to mirroring the HTTP
API features.

As regards List functions, the documentation of the code for the packages includes:

• Java: It has the org.intermine.client.lists Package and inside this one
the Class Lists and ItemList. The Methods for the two Class are documented
with a Description (in the Java API). However, the code for each is not visible.

• Perl: It has the Webservice::InterMine cookbook which is a set of short tuto-
rial ‘recipes’ that aim to demonstrate particular features of the Webservice::
InterMine Perl API. Each recipe presents some code followed by a section
which explains and discusses the features used. ::List, ::List::Upload
recipe, ::List::Enrichment recipe and ::List::Combination recipe are de-
voted to lists. These tutorials are very useful for users however if we want to
read the code behind these functions, we need to go to the intermine-ws-perl
InterMine GitHub repository and into List.pm.

• Python: It has the intermine.lists package accessible through the Python
API. The functions are displayed in modules where a description of the func-
tionality is given for each. In the intermine-ws-python-docs GitHub are 12
tutorials in Jupyter format. Tutorial 9, 10 and 11 explored different functions
of the intermine.lists package. However, if we want to see the code behind
this package, we need to check the intermine-ws-python InterMine GitHub
repository, specifically the folder lists inside the folder intermine.

• JavaScript: In the JavaScript API, there is a section called List in which
the different functions documentation is displayed. However, to see the code
behind these functions we need to check the imjs InterMine GitHub repository,
go to the src folder and open lists.coffee.

4.1.2. Proposed Solution

Among the different ways to proceed, it is chosen to explore how the InterMine
Python package works with lists, specifically for the functions getLists, newList,
renameList and deleteList. The main advantages of the intermine.lists package
are the extension of it and the documentation. Moreover, Python is the only listed
programming language known. The figure from appendix D.1 is a scheme of the

13

http://intermine.org/intermine-ws-java/javadoc/
https://metacpan.org/pod/Webservice::InterMine
http://intermine.org/intermine-ws-python/intermine.lists.html
https://github.com/intermine/intermine-ws-python
https://github.com/intermine/intermine-ws-python
http://alexkalderimis.github.io/imjs/

14 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

ListManager class. It is made to understand the dependencies on other functions
that the four methods that want to be replicated in R Studio (in navy blue) present.

Additionally, I/O Docs of InterMine has helped to identify which are the paths passed
to post and get http requests. It is a live interactive system for RESTful web APIs
where documentation from different mines services is found.

The documentation of the new functions will be presented in the standard way of
documenting the objects in a package; writing Rd. files in the man/directory.

4.2. Interfacing with Cytoscape

4.2.1. Preliminary Project Study

Option A: Read the RCytoscape and InterMineR packages documentation. Work
on a R script to run a query and pass the result to the RCytoscape functions for
visualization. Then, implement the workflow on a Shiny R interface.

Option B: Explore other packages from Cytoscape documentation. Work directly
on a Shiny R interface. The interface should include the following workflow: run
queries in R against data and visualise the results with the Cytoscape tools.

Option C: Biomart Web Service Client model. Cytoscape Apps Ladder. One of the
requirements, and restrictions, is JDK (Java SE Development Kit) 11.

4.2.2. Proposed Solution

The option C is excluded due to the lack of previous experience working with Java.
The option A is discarded although it was the proposed initially. RCytoscape func-
tions use XML-RPC connection to communicate between R and Cytoscape. XML-RPC
is a remote procedure call protocol that uses XML to encode the calls and HTTP for
transport. However, the networks are only displayed in Cytoscape visual interface.
So, the fact of not having the functions to display the visualizations in the same
R Studio makes very difficult to work with Shiny R interface. The option B is
presented as the more straightforward way to end up with a useful tool. Tasks to be
done, before designing the interface, are broken down into these steps:

1. Read the Cytoscape documentation to know what offers.

2. Explore the template queries from a Mine (HumanMine for example) retrieved
by the InterMineR functions.

3. Comprehension of the paths, the interconnection between data classes, types,
and arguments among other things, reading the data tables with the results.

4. Search for existing packages that interface Cytoscape with Shiny.

http://iodocs.apps.intermine.org/
https://github.com/cytoscape/cytoscape/wiki/Cytoscape-App-Ladder

CHAPTER 4. DESIGN ENGINEERING 15

4.3. Tutorials

4.3.1. Preliminary Project Study

Tutorials are an essential tool to get to know the platform. Under the InterMine
platform we can find a great variety of tutorials and tools to understand better how
all works.

FlyMine offers an extensive manual and videos under the ‘help’ link. These apply
to all InterMine databases. There we can watch a brief overview of FlyMine, do
9 exercises and look for the solution, review a set of worked use-cases under the
Cookbook section and read documentation of each function in the warehouse.

YeastMine and TargetMine offer videos demonstrating the main functionalities
of each warehouse. The first one, YeastMine, videos are uploaded in its Youtube
channel. There are 15 short videos of between 1 or 3 minutes. And the videos from
TargetMine are a brief introduction for TargetMine system, an introductory movie
for TargetMine and 4 basics of TargetMine (quick search, template queries, list
functions and queryBuilder). These are uploaded in its tutorials page.

Finally, the intermine-python package tutorials are in the form of Jupyter-Notebooks.
The last tutorial, Tutorial 14, is about Visualisation.

The different formats of tutorials are:

– Videos

– Exercises to solve + solution

– Use-cases

– Jupyter-Notebooks

4.3.2. Proposed Solution

For the tutorials of the InterMineR interface with Cytoscape, use-cases will be
provided in short video format. These will be accessed through GitHub repository
and the same Shiny interface.

4.4. Documentation

4.4.1. Preliminary Project Study

It is important to describe the functions that will be created. In this way, every
function in InterMine platform is explained in a user guide. The user guides or
documentation pages can be found in different formats depending on the language
of the package, the InterMine organism, or simply the applications or purpose of the
functions. It can be found information for even create your own InterMine, build a
database or customize your web application, among others.

https://intermineorg.wordpress.com/flymine/help/?web=1&wdLOR=c8228606C-8263-499D-9F8A-615198B7E682
https://www.youtube.com/watch?v=fnWv6qRl_DA&list=PL0VHJdmmIuj-b00aNRfqwMe9TvkfWWcyZ
https://www.youtube.com/watch?v=fnWv6qRl_DA&list=PL0VHJdmmIuj-b00aNRfqwMe9TvkfWWcyZ
https://targetmine.mizuguchilab.org/tutorials/
https://github.com/intermine/intermine-ws-python-docs

16 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

As with Tutorials, documentation can be displayed in GitHub repositories or in the
help pages of the InterMines in HTML. But also, it can be found at MetaCPAN for
the Perl Client Library or at Bioconductor for the R Client Library.

The documentation describing functions of Java Client Library has for each function
a description of it and the accepting parameters. In some cases, they include what
this function returns or other considerations.

Other documentation, such as for Python which can be found in GitHub and HTML or
for Perl, includes some examples and displays the functions with a little description
of each, no more than a sentence.

To document the interfacing of InterMineR and Cytoscape we have different options,
these are some of them:

– GitHub repository.

– HTML through a page of InterMine.

– HTML though Bioconductor.

– R Script through Bioconductor.

– Document in the same R Shiny interface, creating a section for it.

– Submit a PDF document.

4.4.2. Proposed Solution

Considering the deadline and the lack of previous knowledge of HTML the documen-
tation will be write first in LATEX to have a user guide in a PDF format. Once this
is done, if the Shiny R interface has been done the PDF document content will be
included in it.

The minimum information that should contain this PDF is a brief introduction of
the Shiny interface and the basic functionality achieved with the user interface. It
will be desirable to include one example or demonstrative figure.

https://metacpan.org/pod/Webservice::InterMine
https://www.bioconductor.org/packages/release/bioc/html/InterMineR.html

CHAPTER 5. DETAIL ENGINEERING

5.1. Technologies involved

The first task, the improvements in the core of InterMineR, required concrete
and known environment, R Studio. The httr package is used to send data to the
server or make a request and to get data send back from the sever, the response.
Complementary, the utils package is used to percent-encode characters in URLs.
The S4 class in R is a system for object-oriented programming. It is implemented in
the methods package. Finally, the NAMESPACE of the package is generated using
roxygen2 package. The documentation for the new methods and classes has been
created.

Regarding the second task, having the opportunity of building an application from
scratch also offers a wide array of choices. Choosing Shiny package to build the app
has been made paying special attention to the requirements introduced before. Once
the main environment is defined, additional tools are also added to the development
such as HTML and multiple R packages that are grouped by utility and detailed as
follows.

Functionality Source Libraries Functions
Shiny
interface -
App structure:
tabs, buttons,
input controls,
outputs,
modals. . .

CRAN – shiny
– shinydashboards
– shinycustomloader
– shinyalert
– shinyBS
– shinyFeedback
– rintrojs
– shinyWidgets
– htmltools

actionButton(), column(), conditional-
Panel(), downloadButton(), downloadHan-
dler(), eventReactive(), fileInput(), fluid-
Page(), fluidRow(), htmlOutput(), icon(),
isolate(), mainPanel(), modalDialog(),
observe(), observeEvent(), radioButtons(),
reactive(), reactiveVal(), reactiveValues(),
removeModal(), renderDataTable(), ren-
derText(), req(), runApp(), selectInput(),
showModal(), sidebarLayout(), side-
barPanel(), sliderInput(), submitButton(),
tabPanel(), textAreaInput(), textInput(),
uiOutput(), updateSelectInput(), updateS-
liderInput(), updateTabItems(), update-
TextAreaInput() // box(), dashboardBody(),
dashboardHeader(), dashboardPage(),
dashboardSidebar(), dropdownMenu(),
dropdownMenuOutput(), menuItem(),
menuSubItem(), messageItem(), ren-
derMenu(), sidebarMenu(), tabItem(),
tabItems(), updateTabItems(), with-
Loader() // shinyalert(), useShinyalert() //
bsModal(), bsTooltip() // hideFeedback(),
showFeedbackDanger(), useShinyFeed-
back() // introjs(), introjsUI() // colorS-
electorInput() // div(), tags(), br(), hr(),
includeHTML(), includeMarkdown(),
strong()

GitHub – shinyCheckboxTree checkboxTreeInput(), updateCheckbox-
TreeInput()

17

18 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

Strings Mod-
ifications and
information.

CRAN – R.utils
– base

printf(), decapitalize() // as.numeric(), du-
plicated(), replace(), paste(), unique(),
identical(), nchar(), toupper(), tolower(),
strsplit(), length(), substr(), is.null()

Lists and
dataframes
Modifications
and informa-
tion.

CRAN – base
– rlist
– dplyr
– data.table

list(), data.frame(), duplicated(), replace(),
unique(), identical(), nchar(),length(),
names(), is.null() // list.append() // select(),
mutate() // subset(), rbind()

Display
datatables

CRAN – DT DTOutput, datatable()

Network
analysis -
Including
Cytoscape
functionalities
to visualize
interaction
networks.

CRAN – igraph igraph.to.graphNEL(), edge_attr(), ver-
tex_attr(), graph_from_data_frame()

GitHub – cyjShiny
– cytoscape

cyjShinyOutput(), renderCyjShiny(),
doLayout(), getSelectedNodes(), fit(),
fitSelected(), hideSelection(), invertSelec-
tion(), savePNGtofile(), renderCyjShiny(),
selectFirstNeighbours(), selectNodes(),
showAll() // cola_layout(), cytoscape(),
cytoscapeOutput(), layout(), node_style(),
panzoom(), renderCytoscape()

Biocon-
ductor

– graph
– RCyjs
– Rcy3

nodes() // clearSelection(), dataFramesTo-
JSON(), sfn-method

Save images
Saving the
resulting
networks

CRAN – png
– webshot
– htmlwidgets

writePNG() // webshot() // saveWidget()

Write files
and save zip
folder

CRAN – utils
– base
– base64encode
– RJSONIO
– zip

write.csv(), unzip(), read.csv(), fromJ-
SON() // base64decode() // tempfile(),
setwd(), writeBin(), close(), Sys.time(),
write() // zip()

Query In-
tegrate
databases
of any Mine
and run
data mining
queries.

GitHub – InterMineR initInterMine(), listMines(), getModel(),
getTemplates(), getTemplatesQuery(),
summary(), setConstraints(), setQuery(),
runQuery, simplifyResult()

Table 5.1: R packages.

Hypertext Markup Language (HTML) is the main language for creating web pages.
It is a Markup language (not a programming language) and depends on JavaScript
for executing processes. In Shiny depends on the R package htmltools. The function
includeHTML() is used. An HTML document usually contains references to files
containing CSS code and JavaScript code which act on the page. Cascading Style
Sheets (CSS) is the style sheet language used for describing the presentation of
HTML pages. CSS provides many exclusive features and a way to take control of the

CHAPTER 5. DETAIL ENGINEERING 19

style of a web page separately from its content. CSS can also be nested in the same
document as shown in the appendix B.1 with CSS embedded in <style>.

The code editor that has been used is Visual Studio Code (VS Code) for the first task
and R Studio for the second task. VS Code is an open-source text editor developed by
Microsoft. It includes debugging support, integrated Git control, syntax highlighting,
smart code completion, snippets, and code refactoring. GitHub Desktop is a graphical
interface that integrates the main features of Git making the development process
much easier. The integration of VS Code to GitHub Desktop has let creating Pull
Requests and thus contribute directly to the master branch. The app has been tested
on Microsoft Edge.

5.2. Design

5.2.1. Improvements of the core of InterMineR

The results of a query run against InterMine dependencies returns a set of data that
can be identified by what is called a primary identifier. It is useful to save them,
together with the results, for further analysis and the best way is in a list in our
InterMine account, so we can use it again in a later query. Having investigated on
the Python ListManager class, it has been discovered that this class methods offer
different possibilities to manage list contents and operations. The functionalities
that have been replicated in the new version of InterMineR are get, delete, and
create a list, search for an unused list name, and do operations with lists such as
intersect, union, difference and subtract.

Figure 5.1: Operations with lists.

The following is a diagram of the HTTP request/response model that communicate
the user with the InterMine webservice. It has been useful to identify the comple-
mentary functions that have to be built. From the status line one can know if the
request has been successful, by looking at the http status code. The three-digit
code of a successful request is 200. To access the body of the request the content()

20 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

Figure 5.2: HTTP request/response model.

function can be used. Indicating that the encoding is ISO-8859-1 and the desired
type of output is parsed whom can access the lists parser to see the requested data.
If, instead, data want to be sent to the server POST() has to be called. As been
said, it is required to include the possibility of deleting list and for this DELETE()
is called. Again, the three pieces compose the request when posting and deleting.
Here, it is important to consider the header part to indicate the credentials to au-
thenticate a user agent with the server, in this case the Token or API Access Key.
The status line defines the URL where additional data can be sent to the server
with the query string. Only when posting to create a list, the body contents are the
primary identifiers list. In this case, the name, description, list type and organism
are sent in the URL. When deleting, the name of the list to delete and the Token
are sent in the URL. And when doing operations with lists, the corresponding path
5.1, the new name for the resulting lists, the lists to operate and the description is
sent in the URL. Additionally, tags to categorize the new list can be specified at the
end of the URL. The user can do intersect, union and difference with many lists as
considered but when doing subtract the user must specify two kind of lists, source
list and subtraction lists.

1 #’ @rdname webservice -methods
2 #’ @exportMethod list_manager
3 setGeneric("list_manager", function(object ,...){
4 standardGeneric("list_manager")
5 })
6 #’ @rdname webservice -methods
7 #’ @exportMethod list_manager
8 setMethod(
9 "list_manager",

10 signature(object = "Service"),
11 function(object ,...){
12 return(new("ListManager",
13 DEFAULT_LIST_NAME = ’my_list’,
14 DEFAULT_DESCRIPTION = ’List created with R client library’,
15 LIST_PATH = ’/lists’,
16 INTERSECTION_PATH = ’/lists/intersect/json’,
17 UNION_PATH = ’/lists/union/json’,
18 DIFFERENCE_PATH = ’/lists/diff/json’,
19 SUBTRACTION_PATH = ’/lists/subtract/json’,
20 mine = object@mine ,
21 token = object@token))
22
23 })

CHAPTER 5. DETAIL ENGINEERING 21

Listing 5.1: webservice-methods.R list_manager

Having identified how the HTTP request/response must work the development of
the functions is going to be described.

The ListManager class has been created in a R script with the same name. Inside
representation, the list of slots or attributes are character vectors that are defined in
the list_manager method (see appendix A.5). This method is from Service class
(see appendix A.2) and initialize the slots of the ListManager class with the different
paths that will be required in the URL to make a request (previous figure). It also
contains the mine chosen by the user and the Token, which come from the Service
class definition in initInterMine() function (see appendix A.4).

1. Service class: It is the main interface for the user. It will provide access to
queries and templates, as well as doing the background task of fetching the
data model and requesting the query results. Objects can be created using the
function initInterMine().

2. InterMineR class: It constitutes a class used to store the information which are
required for performing a query for biological data in an InterMine instance.
Specifically, it contains information about:

(a) the type of data which are to be returned from the InterMine instance,

(b) the type of sorting performed on these data, and

(c) the constraints used to perform the query for the data of interest.

Objects can be created using the function setQuery().

3. ListManager class: It constitutes a class used to store the information required
for managing lists contents and performing operations. Specifically, it contains
information about:

(a) the default list name and description,

(b) the different URL endpoints, and

(c) the information of the WebService.

Objects can be created using the function list_manager(), which is a webservice
method.

The methods for the ListManager class are defined in a R script with the same name.
Three methods and one function have been auxiliary defined to be called inside the
main methods which are get_list, delete_list, create_list, intersect, union, difference
and subtract. The auxiliary methods are; GET_api_list which returns the response
object of the Request, get_unused_list_name which checks if the name given by the
user has been already used and, in such a case, provides a new one, and do_operation
which creates a new list results of an operation. To see the detail of each function
you can read the appendix A.6.

22 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

Correctly documenting the functions from a package is a key step to publish it. Users
need it to know how to use the package but also is useful for the developer and future
developers to extend it. The object documentation method is the chosen as can be
accessed by ? or help(). To do so, .Rd files are written in the man/directory in a
concrete syntax. When you use ? function, help("function"), or example("function"), R
looks for an .Rd file containing \alias{"function"}. It then parses the file, converts
it into HTML and displays it. These files use a custom syntax, loosely based on LATEX.
One of the Rd files created can be found in the appendix A.7. The main commands
that have been used to write the new documentation have been:

– \name{name}, \title{Title}, \description{...}: the header provides use-
ful information about the objects documented.

– \examples{...}: examples of how to use the function. Code in this section is
set in typewriter font without reformatting and is run by example().

– \author{...}: information about the author(s).

– \seealso{...}: allows you to point to other useful resources.

– \section{...}: information is given within a series of sections with standard
names.

– \arguments{...}: Description of the function’s arguments, using an
entry of the form: \item{argument}{Description of argument}.

– \code{\link{...}}: format inline code and link to other documentation, in
this case to other functions from the package.

The package roxygen2 is used to generate Rd documentation, NAMESPACE file, and
collation field using specially formatted comments. The main advantage it offers is
keeping the documentation up-to-date as the documentation is written in-line with
code. In this project roxygen comments have only been used to create the NAMESPACE.
Roxygen comments start with #’ and come before a function to distinguish them from
regular comments, the collection of comments is called a block. Blocks gain additional
structure using tags. @rdname tag is used to control where method documentation
goes and document multiple functions in the same file. @import tag is used to import
all the functions from a package and @importFrom to import a specific function
from a package. If instead, what is wanted is to export an object @export tag is
put. Specifically, when the object is a method it is used @exportMethod. The last
tags commented enable roxygen automatically generate the right directive in the
NAMESPACE. Once the tags are placed, just running devtools::document() (or pressing
Ctrl/Cmd + Shift + D in RStudio) the roxygen comments are converted to .Rd
files.

At the end of the task, when the results have been accepted by the supervisors
Daniela and Yo, a Jupyter Notebook for R has been created replicating the one
written with the Python API. The results obtained with it are going to be discussed
in the Results section 5.3.

CHAPTER 5. DETAIL ENGINEERING 23

5.2.2. Interfacing InterMineR and Cytoscape with Shiny

The Shiny interface allows researchers, without software experience, to run queries
and interpret them with Cytoscape networks without prior software experience.
The tasks have been divided in seven tabs inside the app as the next workflow
diagram 5.3 represents.

Figure 5.3: Workflow for the Shiny Interface.

The following describes the general architecture of the Shiny interface. Then, the
design of each tab is going to be analysed individually.

The structure of a Shiny App is defined in the main file app.R, where the app is
contained. The app.R file has three components: a user interface object called ui, a
server function and a call to the shinyApp function (see B.2). The ui controls the
structure of the app while the server function contains the instructions to build it.
The ui is a dashboard page, a facility provided by shinydashboard package. This
type of layout divides the screen in three sections; header, sidebar and body as can
be seen in the scheme 5.4. Number 1 in the scheme corresponds to the dashboard
header which includes a dropdown menu. The dropdown menu, number 2, gives
access to the GitHub repository where the source code is published and to the Issues
section of the repository through message items, message inside the menu. Moving
to the dashboard sidebar includes a select input control, number 3, and a sidebar
menu, number 4. The select input enables the user to select the InterMine to start
the query. The list of InterMines displayed is obtained from the function listMines()
from InterMineR package (see B.5). Once this is done, two more functions from this
package are called. initInterMine() function saves the selection of the user in a list
class (see B.5) and get-Model() the specifications of the model in a multilevel list
(see B.5).

A selectInput is just an example of the numerous control widgets that Shiny provides.
A widget control is a web element that the users can interact with and send messages
to the Shiny app. They collect a value from the user, that when the widget is changed
it changes as well. The first two arguments when including a widget are the name
and the label. The name will not be seen by the user and enables the access of the
widget’s value, just by indicating input$name. The label, a string, is what appears
in the web-app.

In the sidebar menu (number 4 in Figure 5.4), the seven tabs of the app are me-
nuItems or menuSubItems and the user can go directly to a tab by clicking on its
corresponding menuItem. Moving to the dashboard body or tab panel (see Figure 5.4)

24 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

Figure 5.4: Layout divided into Header, Sidebar and Body.

two layouts configurations can be found depending on the tab.

For sub-tabs “Template” and “Query builder”, and tabs “Visualize your results” and
“Overlay additional data” tab it is found the model of the first scheme 5.4. In this
model, the tab panel is divided in a sidebar panel and a main panel. The Sidebar
Panel is displayed with a greyish background colour and typically contains input
controls. The Main Panel occupies 2/3 of the horizontal width and typically contains
outputs. Other functions such as fluidRow(), column() and box() are used to build the
layout up from a grid system (find a simplified version of the dashboard structure in
B.4).

For the rest of tabs, “Run your query” tab and “Saved Results” tab, the tab panel is
divided horizontally in two sections (see Figure 5.5). An upper fixed section that is a
Fluid Row and contains input controls, and a Conditional Panel. The last element is
displayed when the user has correctly followed the steps in the Fluid Row (see B.3).

Figure 5.5: Second Layout configuration with a Conditional Panel.

Shiny offers many HTML tag functions for formatting text. The most used in this
app are p() to create a paragraph, br() to create a line break, hr() to create a thematic

CHAPTER 5. DETAIL ENGINEERING 25

break and strong() to give emphasis to the text. The tag div() has been used to placed
action buttons, this is the case of the button on the button right corner to advance
the tab (see in Figure 5.5 as Next tab).

From package htmltools, the functions includeHTML() and includeMarkdown()
have been used to create the start screen. The first, includeHTML(), loads and ren-
ders the html file intro_text.html. This combined with the shiny functionality to
display modal dialogs, makes a pop-up window with a welcoming message when the
user enters to the app. The second function, includeMarkdown(), renders Markdown
from the file home.md and turns it into HTML. This creates the “home” tab content,
which includes an inline frame embedding a walk-through video of the whole app
and some use-cases.

Once the architecture or user interface object has been described, the functionality
defined in the server object will be reviewed going tab by tab.

5.2.3. Set Query Tab

This tab is in fact two sub-tabs, Templates and Query Builder. This means that
the user can take two pathways, selecting a template query that can be modified or
creating the query from scratch, see the details in appendix B.3.. The second one is
only recommended for experienced users.

Regarding the Template tab, it is divided in three sections: the sidebar panel, the
main panel, and the summary. A graphic description of the tab is schematized in
Figure 5.6. The sidebar panel contains an informative message of the InterMine
selected to start the query and a select list of all the template queries available
for the InterMine (see in B.5). The list of templates is obtained from the function
getTemplates() from the IntermineR package (see in B.6). In the main panel, the
pre-defined constraints of the selected template are displayed (path, operator, and
value) and the user can edit the values in a text area input control (see in B.7).
Finally, in the summary section the summary() function from InterMineR returns a
summary about the constraints in the form a data frame (see in B.10). Then, the
renderDataTable() function from Shiny makes a reactive version of the data frame,
which will be rendered with the DataTables library.

Regarding the Query Builder tab, when the user chooses it to start the query
process a modal created by shinyalert() is displayed warning about the complexity of
building a query from scratch. As in the Template tab an informative message of the
InterMine selected is displayed. The tab is divided in two main sections, the query
builder (see in B.8, and the summary. The first section can be seen in the following
image (Figure 5.7).

The main functions are represented graphically in the diagram of Figure 5.8. Firstly,
the data classes of the InterMine are displayed in the select input control, marked
in blue with the number 1 in Figure 5.7. The options are retrieved from the “type”
column in the resulting data frame getModel() (see B.6), a function from InterMineR.
When the user selects a first data class, the attributes of it are displayed in a select
multiple input control to define the data that wants to be shown, marked in green
with the number 2. This also defines the type of sorting which will be used to order

26 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

Figure 5.6: Diagram of the Template tab.

Figure 5.7: Screenshot of the Query Builder tab.

the retrieved data frame. The attributes are obtained from the child_name column
from the getModel data frame. Only the child_name that correspond to a type
equal to the data class just selected and with null child_type are retrieved (see
Figure 5.8). At this point, the user has the first opportunity to set a constraint
against the first data class. The constraint can be set in the input controls marked
with the number 3. If the user presses constraints action button, a conditional panel
that depends on this action appears below marked with number 4. In this new panel,
the user can set a constraint against an attribute from the first data class.

To add a second level in the query, the user must press the button “SET” marked
with number 5 in Figure 5.7. In the consecutive levels, one checkbox tree created
with the shinyCheckboxTree package for the data type to be returned (shown in the
results table), number 7, and another one for data types to set constraints, number
8. The user can overlay up to five levels by pressing the “SET” buttons that appear

CHAPTER 5. DETAIL ENGINEERING 27

at the end of each checkbox tree. Once achieved the third level, the user can press
“Overlay extra data” button to set two more levels into the query. The options that
appear in each checkbox tree are obtained in the same manner; in the getModel
resulting data frame are searched the rows with type equal to the previous level
data class and that have a null child_type and from these rows the child_type
values are retrieved. These values are transformed to paths applying some string
operations and modifications. The whole process is done under eventReactive() and
observeEvent() functions that respond to “event-like” reactive inputs and values.

Before discussing further aspects of this tab, reactive programming must be ex-
plained. In the Shiny framework the observers (functions) respond to any of their
reactive expression, or inputs, changing. However, this is not always desirable. Some-
times it is wanted reactive values that trigger other calculations in this way, which
are called events and are used under observeEvent() function. Instead, when what it
is wanted is to create or update a value that only updates in response to an event,
eventReactive() function is used. Using both functions, the events can be specified.

Finally, regarding the process of setting constraints, users can set multiple of them
in each level. However, some rules that are specify in the documentation and in the
same app must be followed such as separating the different values by commas. The
constraints are created with the setConstraints() function from InterMineR (see B.8).

Figure 5.8: Diagram of the Query Builder tab.

Before proceeding to the next tab, the user has the possibility to modify the paths
(data types and attributes) that are going to be seen in the results table. When the

28 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

user presses the "SET QUERY" button, a modal dialog is displayed with a data table
where each row is a path (see in B.9). The user can delete the rows as is expressed
in Figure 5.8. This has been included in response to the issue that when some data
types of further levels are wanted other from first levels must be selected.

At the end of this process, and if the query has been correctly built using the function
setQuery() from InterMineR, a summary of the constraints is shown (see B.10). Then,
the action button to move to the next tab is enabled.

5.2.4. Run your Query Tab

Once the user has advance to this tab, the runQuery() function from InterMineR
is called (see B.11). The resulting data frame is displayed, rendered by renderDT()
and datatable() that create an HTML widget to display the data frame. It must be
checked whether the data comes from the Template path or the Query Builder path.
To do so, the shinyalert() function, the one creating the pop-up message in Query
Builder tab, has an attribute called “callbackR”. This is an R function that will be
called when the modal exits. In this case, the "callback" is to change a “reactive
value” object, defined as modality(), to true. The value of "modality" is verified before
using datatable() to display the results table. If the value is true it is known that
the Query Builder path has been followed, else the Template path. And this is done
from now on when the results of the query must be used.

To proceed, the user should select the “Set Nodes and Edges” button to select the id
and the source for the Cytoscape Network Visualization. The options are the name
columns from the results data table. At this point, the user may also want to set
node’s attributes to be able to manipulate the network chart according to filtering
criteria given by these attributes. In the following diagram 5.9 the flow described is
represented.

Figure 5.9: Diagram of the Query Builder tab.

5.2.5. Visualize your Results Tab

In this tab, the cytoscape.js JavaScript library is wrapped in a html widget for
Shiny called cyjShiny. To prepare the data to be passed to the cyjShiny() function,
which must be a graph in json format, another R package called igraph has been
used. The function graph_from_data_frame() has been used to create an igraph
graph from the data frame of results (see in B.12). Two data frames are passed to
the function. It must be a data frame giving vertex metadata. The first data frame,
nodes, is constructed from the id’s selected in the previous tab without repeating
names. The first column of nodes (also known as vertices) data frame is assumed

CHAPTER 5. DETAIL ENGINEERING 29

to contain symbolic vertex names, this will be added to the graphs as the "name"
vertex attribute. The other data frame, edge data frame, is checked to contain only
vertex names listed in vertices. This data frame consists of three columns. First
column is source which corresponds to the nodes. Second column is target which
corresponds to the edges. And third column is interaction defined as source_target.
Using the functions vertex_attr() the node’s attributes are included in the igraph
and using edges_attr() the edge’s attributes. The igraph.to.graphNEL() function is
provided to convert the igraph to a graphNEL object. Finally, graphToJSON() is
used to convert the graphNEL graph to a graph in json format (see in B.12). These
steps are schematized in the left branch of diagram 5.10

Once the graph is prepared, it is time to examine the visualization options. Starting
from the basic, what the user sees as default, the “cola” layout arranges the nodes
using constraint-based optimization techniques (see in B.16). In the sidebar panel,
the user can select a different layout, with doLayout(), and node(s) by ID or by
attribute (see in B.13). With the selected nodes the user can decide to do different
actions using the buttons in the main panel. These functionalities are provided by
the R package cyjShiny. The visualization options are zoom the selected nodes with
fitSelected(), reset the view with fit(), select the first neighbour(s) with sfn(), invert
the selection with invertSelection(), unselect nodes with clearSelection(), remove
selected nodes hideSelection(), show all again with showAll() and get the selected
nodes names with getSelectedNodes() (see in B.14). The nodes that are removed are
kept in this condition in the next tab taking advantage of creating a reactive value
that changes dynamically with reactiveVal() (see in B.15).

Finally, the user can save the network as an image in PNG format. This functionality
is provided by the function savePNGtoFile() by cyjShiny package. Using the function
shinyalert() a modal dialog informs about the download directory location (see in
B.16).

Figure 5.10: Diagram of the Visualize your Results tab.

30 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

5.2.6. Overlay Additional Data Tab

In this tab the user has different options at its disposal to style the network chart.
The network chart is created using the function cytoscape() from the R package
cytoscape, a html widget for cytoscape.js (see in B.20). Two data frames, one for
nodes and the other for edges, must be passed to the function (see in B.17). The
nodes data frame has as components id, node_color, node_width, node_height and
node_shape (see in B.19). The last four components are parameters to style the node’s
body using the function node_style() (see in B.21). The edges data frame components
are source (corresponds to nodes), target (corresponds to edges) and interaction. The
configuration of the two data frames can be seen in the left side of the diagram from
Figure 5.12. The layouts are specified using cola_layout() and layout(). The function
panzoom() enables for panning (panoramic movement) and zooming in and out (see
in B.20).

In the sidebar panel the user can either customize the node’s body or apply a gradient.
Customize the node’s body means that selecting the nodes by ID or by attribute value
the user can change their shape, size, or colour (see the options on the right side of
Figure 5.12). If instead the user decides to apply a gradient, defines a continuous-to-
continuous mapping and continuous data are mapped to properties. Depending on
the property it can be distinguished between mapping continuous numerical values
to a colour gradient or to node size (see in B.18).

Each time the user defines a new style the "Customize the Network" button must
be pressed to apply the changes (see in B.21). The styles are saved and can be
seen pressing the "History of changes" button. When this is done, a modal window
appears with a table of four columns: nodes, attribute, parameter, and selection (see
Figure 5.11). Each row is the style of one node for a concrete parameter that can be
background-colour, size, or shape. The user can select one or multiple rows to delete,
this way returning to the default values of the parameters.

Figure 5.11: History of Changes modal dialog where changes can be seen and deleted.

Regarding the definition of gradients, the user must select a node attribute from

CHAPTER 5. DETAIL ENGINEERING 31

the ones chosen in the Run your Query tab. Then, the user can specify the range
of values within the values of the attribute to map and choose between a size or a
colour gradient (see in B.18). The size gradient can be set between 10 and 200 in
pixels at zoom 1. And the colour gradient must be defined choosing two extreme
colours from a basic pallet, using colorSelectorInput() function from ShinyWidgets
package (see in Figure 5.12.

Finally, the user can save the results as an image in PNG format or in a ZIP folder
with the files necessary to display again an interactive Network chart. For the first,
the function webshot() from the same name package is used along with the Shiny
downloadHandler() (see in B.22). The ZIP folder will contain the results of the query
in a CSV file, two CSV files with the basic components and the modifications made to
the Network and a JSON file of the Network. These files are created using write.csv()
for the CSV files. For the JSON file the function dataFramestoJSON() from RCyjs
package is used to convert the nodes and edges data frames into a JSON format
network. Then, the files are zipped using zipr() from zip package (see in B.22). Just
to be mentioned, if no names is provided by the user for the downloading of the ZIP
folder, a default names is generated beginning with workflow_final and following
with the date.

Figure 5.12: Diagram of the Overlay Additional Data tab.

5.2.7. Saved Networks tab

In this last tab, the user can display previously saved networks. Using fileInput()
function from shiny, a file upload control is created. Pressing “Browse” the user can
navigate to find the ZIP folder that have been saved in the “Overlay additional data”
tab. Once it is uploaded, the user must press Unzip files action button, and this

32 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

will call the function unzip() that extract the files from the folder. Using packages
DT and data.table the results from the query are displayed in a table as have
been seen in Run your Query tab (see in B.23). Using the package cytoscape the
interactive Network Chart is displayed. The visual styles for the node’s body set by
the user are maintained and appear in the visualization. The layout by default is
cola. Figure 5.13 shows a diagram with the workflow of the tab.

Figure 5.13: Diagram of the Saved Networks tab.

5.2.8. Customer Support

Having a great support is as important as having a great product. When software
accomplishes both product and support, the customer has a great experience. In this
app three support channels have been considered: developer contact and feedback,
help inside the app and documentation.

As mentioned before in this section, the dropdown menu, present in all the tabs,
gives access to the GitHub repository where the source code is published and to the
Issues section of the repository. The last element, Issues, is a bug tracker where
the user can be in contact with the developer and the messages are shared with the
other users. Thus, Issues is a great way to collect user feedback and report software
bugs.

Regarding the app help system, help content should be easy for users to find and give
answer to common questions about the app. For these reasons, it has been decided
to include a help button in each tab and hints in the different elements. The help
buttons can be easily recognized by a question mark icon. When the user presses
the help buttons step-by-step introductions appeared. The rintrojs R package,
based on the JavaScript library Intro.js, is used to add these instructions. The
function introjsUI() must be called once in the ui and then the function rintrojs()
supports programmatic introductions and dynamically generate them using the
steps option. Tip or hints are given using the package shinyBS. With the function
bsTooltip() inside the UI, information is added to controls and outputs. Hovering
with the mouse cursor over these controls and outputs the information is displayed.
Additionally, some feedback messages are only displayed in reaction to an action.
Those are the feedback dangers created with the function showFeedbackDanger()
from the package shinyFeedback. When the condition to display the message is not
fulfilled any more the function hideFeedback() is called to hide it.

CHAPTER 5. DETAIL ENGINEERING 33

Finally, documentation takes the form of a user guide. It has been written in Latex.
The contents of it include the requirements, the capabilities, basic usage instructions
and where to find the source code. The requirements are mainly software, no
hardware requirements are necessary except for a computer with storage to save
RStudio. The user guide can be read in the appendix B.5..

5.2.9. GitHub Repository

Source code is open and is held in the git repository in GitHub. The users can
download the last version from GitHub following the indication provided in the
README.md.

5.3. Results

5.3.1. Improvements of the core of InterMineR

To evaluate the proper functioning of the new version of the InterMineR package
a practical case has been followed. This consists of building and running two
queries and intersect their results. Firstly, initInterMine(), which import the Service
class, is used to say that HumanMine is the mine wanted for querying and set
the API Access key or Token. The first query selects all the genes associated with
diabetes. This requires two constraints, first ensure that all genes returned are Homo
Sapiens genes (HumanMine contains some non-human genes for homology query
purposes) and second restrict results to genes that are associated with diabetes. The
second query is for genes that are in the public HumanMine list PL_Pax6_Targets,
that are also expressed in the pancreas at a High or Medium level, according
to data originally from the Human Protein Atlas Project [27]. In this case, the
constraints are three. First, all the genes should be in the list PL_Pax6_Targets,
that is the same that saying that all the genes must be targets of Pax-6. Second,
Gene.proteinAtlasExpression.tissue.name should be equal to Pancreas. And third,
Gene.proteinAtlasExpression.level should be set to High OR Medium. This will
require two constraints, one for each of medium and high. You can find the code in
appendix A.4.

These are the results from the queries:

Figure 5.14: Results of queries: diabetes genes (left) and Pax6 targets that have high
expression in the Pancreas (right).

https://github.com/celions/InterMineR-Cytoscape.git

34 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

From both results, the primary identifiers are saved in lists in the account. The
names given to these lists are diabetesGenes and UpinPancreas. At this point,
it has been tested list_manager(), delete_lists() and create_list(), and indirectly
GET_api_list().

Figure 5.15: Your Lists tab in MyMine space from HumanMine.

Next, the intersect method is used to find those genes that are upregulated in the
pancreas that are also associated with the disease diabetes. The first (UpinPan-
creas) and second (diabetesGenes) lists are intersected using the method from the
ListManager class. The results are genes HNF 1B, HNF 4A and TCF7L2 as can be
seen in the resulting list created in MyMine section or the personal account, on the
website. Until here, it has been tested indirectly the function do_operation().

Finally, we fed the intersected list from above back into another query to see if there
was any association of these genes with diabetes phenotypes according to GWAS
(Genome-wide association studies) from National Human Genome Research Institute
(NHGRI). GWAS studies seek to associate single nucleotide polymorphisms (SNPs)
with specific phenotypes and diseases and have uncovered scores of genetic variants
associated with complex disease traits. To do so, the three primary identifiers
resulting of the intersection operation are the new constraints plus the diabetes
phenotype condition. The unique genes that are returned are saved in a new list,
called GWAS, in the personal account. These genes are HNF 4A and TCF7L2.

The Jupyter Notebook for R with all workflow for this practical case can be found in
the appendix A.4..

CHAPTER 5. DETAIL ENGINEERING 35

Figure 5.16: List Analysis for GWAS page showing the two genes resulting from the
intersection.

5.3.2. Use cases for the InterMineR-Cytoscape Shiny Interface

In this section the applications are explored through two use-cases. For this, two
InterMines have been examined; HumanMine and CovidMine.

HumanMine integrates many types of data for Homo sapiens, but genomic is the
most representative type. For the demonstration, Disease to Gene mappings from
OMIM (Online Mendelian Inheritance in Man) have been acquired following the
template “Disease –> Genes + RNA-seq Expression”. This template shows the genes
involved and their tissue-specific expression level for a specified disease, in this case
Diabetes. Using the Query Builder, it has been added more restrictive constraints to
the Disease.name and the Gene.symbol.

Besides, CovidMine is a test InterMine dedicated to SARS-CoV-2 genomics and
geographic distribution data. It integrates confirmed COVID-19 cases, deaths, new
confirmed cases and new deaths for countries from Our World In Data, SARS-CoV-2
reference genome and nucleotide sequences from isolates deposited in Genbank. For
the exhibition, the template "Date –> Confirmed cases, deaths, new confirmed cases
and new deaths" is going to be used.

For the HumanMine use-case, the researcher investigating genes involved in differ-
ent types of Diabetes should go to the Template Query tab and select the template
“Disease –> Genes + RNA-seq Expression” (see in appendix C.1). By default, this
template constraints the results for Diabetes disease as seen in appendix C.2. The
researcher would see the constraints in the summary table, see in appendix C.3.
Moving to the next tab (Query Results), the nodes, edges and attributes should
be determined. The nodes and edges are determined choosing the source and tar-
get data. The source nodes interact with the target nodes, drawing the edges. To
see a map with all the types of Diabetes and the genes involved, the researcher
should select as source diseases’ primary identifiers and as target genes symbols
(see in appendix C.4). In the visualize your results tab (C.5), the researcher wants
to focus on the genes that are related with Type 2 Diabetes Mellitus and see the
other diabetes that share genes with it. To do so, the easiest path is to click on the

https://www.humanmine.org/
https://test.intermine.org/covidmine/begin.do
https://www.omim.org/
https://www.humanmine.org/humanmine/template.do?name=Disease_gene_RNAseq
https://covidtracking.com
https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/#reference-genome
https://test.intermine.org/covidmine/template.do?name=Date_cases&scope=all
https://test.intermine.org/covidmine/template.do?name=Date_cases&scope=all

36 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

node OMIM:125853 (Type 2 Diabetes Mellitus) and click on "Select First Neighbor"
button as many times as interconnection levels the researcher desires. It can be
seen in C.7 and C.8. Then, by clicking on "Invert Selected" and "Remove Selected"
buttons consecutively, a new filtered network is obtained (see in C.9 and C.10). The
new network shows the genes involved with Type 2 Diabetes and the other types of
Diabetes where they are also involved. It can be downloaded as an image in PNG
format, as can be seen in appendix C.12 and C.13. The following are the original and
the new networks:

(a) Original. (b) Filtered by First Neighbours.

Figure 5.17: Networks of the Workflow A (see them bigger in C.14).

Moving to the Overlay additional data, the researcher can apply more filters to make
the resulting network from the last tab more understandable. The modifications that
have been done are: changing the background colour of the genes involved in Type 2
Diabetes Mellitus to orange and changing the shape of the genes associated with
Type 1 Diabetes Mellitus to triangular. The steps can be followed in the appendixes
C.16, C.17 and C.18. The resulting network can be seen in Figure 5.18.

Finally, it is recommended to save the network in a ZIP folder as can bee seen in
appendix C.19. This way, the researcher could uploaded from the last tab of the
interface, the Saved Networks tab, and visualize the results again (see in C.20).

With the workflow A, it can clearly be see that only one gene, HNF1A, appears to be
involved in both diseases. The researcher has seen the need to add more restrictive
constraints. In the next workflow, the Query Builder is used with that purpose. The
researcher wants to know the level of expression in the different tissues of the genes
related with Type 1 and Type 2 Diabetes Mellitus.

Firstly, the researcher should specify a data class to begin the new query, in this
case Disease. Then, Disease type of data to be returned is selected, in this case
Name and Primary Identifier. In this first data class a constraint to Disease.name
is set indicating that only results of Type 1 Diabetes Mellitus are wanted. How is
done the configuration of the first data class can be seen in the appendix C.21. The
configuration for the following levels can be visualized in the video for this use-case.

When the researcher runs the query, a table with 216 entries is displayed. This
table contains information about the four genes involved in Type 1 Diabetes Mellitus
and its expression level in different tissues. As the researcher wants a general view
of the expression of all four genes, the expression score column should be selected
as target data and the gene symbol column as source (see in appendix C.22). The

CHAPTER 5. DETAIL ENGINEERING 37

Figure 5.18: Customized network of Workflow A.

researcher can plot a quick size gradient map going to the Overlay additional data
tab. The results are shown in the appendix C.24.

It is at this point that the researcher goes back to the Query Builder tab to add
another constraint for Gene.symbol as can be seen in the appendix C.25. The reason
to do that is restricting the results to one of the four genes to obtain a map of the
expression level in the different tissues for each gene. And once, the four maps are
being created compared them.

The summary of constraints for the query of HNF1A gene expression in Diabetes
Mellitus Type 1 can be seen in the appendix C.26. Once the researcher runs the
new query, the results are displayed on a table of 54 entries, one for each different
tissue. At this point, the target and source data is defined by RNASeqResults.tissue
column and Genes.symbol column, respectively. As nodes attributes, it is necessary
to have RNASeqResults.expressionScore. This configuration can be seen in the
appendix C.27.

Again, a size gradient map is plotted. After that, five background-colour overlays are
set for the tissues with highest level of expression of HNF1A gene (as seen in C.28).
The summary of overlays is displayed pressing the "History of Changes" button, and
this one can be found in the appendix C.29.

The expression data is not disease-specific as can be seen in the appendix C.30,
where the HNF1A gene expression level is mapped for Type 1 and Type 2 Diabetes
Mellitus. It must be mentioned that as the overlaying changes are saved, unless
the user wants to delete them in the History of Changes window, the customized
background colour configuration is preserved.

In the appendix C.31 - C.36, the constraints summaries for other three queries (genes

38 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

IL6, ITPR3, PTPN22) and the size gradient mapping configuration are shown.

(a) Expression level of HNF1A. (b) Expression level of IL6.

(c) Expression level of ITPR3. (d) Expression level of PTPN22.

Figure 5.19: Size gradients for the genes involved in Type 1 Diabetes Mellitus.

From Figure 5.19(a), it can be seen that the HNF1A is mostly expressed in the liver
(in red), followed by the small intestine - terminal lleum (in orange) and the kidney
cortex (in yellow). Then, at the same level, there are the stomach, the transverse
colon and the pancreas (in blue), and finally the kidney medulla (in dark blue). The
expression score of the HNF1A in the liver is rounded 8.7 (see the maximum value
in the range of values to map of appendix C.30(a)). Comparing this value with
the highest ones of the other three genes, it is concluded that the HNF1A is the
less expressed of the four genes. However, HNF1A plays an important role in the
maturity onset diabetes of the young (MODY) type 3 [28]. MODY type 3 has the
primary identifier OMIM:600496. Looking at Figure 5.18, it is the only gene involved
in this type of diabetes.

Moving to IL6 gene map 5.19(b), it is very highly expressed in adipose tissue (Adipose-
Visceral). IL6 plays a role in the inflammation of adipose tissue in Type 1 Diabetes
Mellitus [29]. Looking at the preliminary conclusions of a study that investigates
the relation between be affected by Diabetes Mellitus and the increment of severity
of coronavirus disease[30], it points us to the high level of expression of IL6 in the
lungs that can be seen in the network 5.19(b).

The ITPR3 gene has the highest expression score, being this one 135.751 in the
nerve-tibial but closely followed by thyroid with 133.338, and skin with 107.076

CHAPTER 5. DETAIL ENGINEERING 39

for not sun exposed and 105.507 for sun exposed. The expression data presented
here does not provide any evidence for its involvement in key tissues. However,
its role has been related with mitochondrial dysfunction and ROS production that
accelerates diabetes [31].

Finally, in the map for PTPN22 gene 5.19(d), the EBV (Epstein-Barr virus) trans-
formed lymphocytes have the highest score with a value of 50.562. Although they
are not the highest factor of risk, viruses such as Epstein Barr or Coxsackie can be
the cause of Type 1 Diabetes [32].

So far, it has been reviewed a relevant case for biomedicine research application of
the interface. Now, moving to an easiest use-case but very relevant in the pandemic
context, we will take a closer look to the situation in each country.

From the sidebar menu, the CovidMine is selected. Then, in the Template Query
tab the "Date –> Confirmed cases, deaths, new confirmed cases and new deaths"
template. It is going to be chosen a nearest date to reduce the number of re-
sults returned. So, it is selected a week going from 13th April to 19th April
2021 (see in the appendix C.37). In the next tab, the results are displayed on
a table with 1,467 entries. To create a network with the countries that will be
mapped by confirmed cases and deaths, GeoLocation.country columnn is the target
data and GeoLocation.cases.totalConfirmed, GeoLocation.cases.totalDeaths, GeoLoca-
tion.cases.newConfirmed and GeoLocation.cases.newDeaths are the nodes attributes
that are going to be used to apply a gradient (see in C.38).

In the Visualize your Results tab, the node 2021-04-14 and its first neighbours are
selected using the buttons (C.39). Then, the selection is inverted (C.40) and finally
the new selection is removed (C.41). The latest selection is preserved in the next
tab. A size gradient is applied to the node attribute GeoLocation.cases.newConfirmed
but the presence of continents in the network distorts the result (see in the ap-
pendix C.42). At this point, going back to the Visualize your Results tab the conti-
nents are selected and removed (C.43-C.44). The new size gradient without conti-
nents nodes can be found in the appendix C.45. It can be fast and clear that India
was the country with bigger number of new confirmed cases in the middle of April
2021. India was followed for the United States of America, Brazil and Turkey.

Another type of gradients are the colour gradient. Selecting the range of values to
map in the options for continuous mapping it can be specified a threshold to a numeric
attribute. For example, for the case of new deaths per day the threshold has been
set to 500 (see in C.46(b)). The resulting network shows in red the countries where
the threshold was exceeded. Again, these countries were India, the United States
and Brazil. Also, in red, it could be found Poland, Italy, Mexico and Ukraine. With
a darker red or purple were Turkey, Russia, Argentina, Peru, Hungary, Colombia,
Iran, Germany and France. The rest of countries were clearly determined to be
under 500 new deaths.

Finally, only the continents have been selected to show four basic networks C.47
where the new and total confirmed cases and deaths on 14th April 2021 are repre-
sented. The network for the new confirmed cases has been customized with different
background colours following a colour scale where the warm colours are for the
countries with highest number of cases and the cold colours for the opposite extreme
(see in C.48). This overlay network has been saved in a ZIP folder. Going to the last

https://test.intermine.org/covidmine/template.do?name=Date_cases&scope=all

40 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

tab of the Shiny interface, the previously ZIP folder has been uploaded, unzipped
the files, and the network with the customization of colours has been displayed (see
in C.49).

These use-cases can also be followed in the introductory videos from the Home tab of
the Shiny interface or the YouTube channel.

https://www.youtube.com/channel/UCyiIdLaWWjxZqW7kJtAX7Cw

CHAPTER 6. ORGANIZATION

6.1. Technique pre-feasibility study

It is important to detect the strengths, weakness, opportunities, and threats of the
project and go a step further to create actionable strategies and plans to improve. The
background in R language and R Shiny interfaces brings a competitive advantage
to this student project but also to the InterMine improvement. The context of an
open source software project also offers a great opportunity for cooperation and helps
building strategies to minimize the weaknesses and threats. The following figures
are the SWOT analysis matrix in 6.1 and a TOWS analysis in 6.2.

Figure 6.1: SWOT Analysis.

Figure 6.2: TOWS Analysis.

41

42 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

6.2. Schedule of Execution

From the timetable 6.3 an overview of the scheduled tasks during the development
of the project, indicating the deadlines for each of them and their duration in days, is
seen. In the appendix D.2, the Work Breakdown Structure (WBS) can be read. In the
WBS the project is splitted in smaller components to be the guidance of the schedule
development and control. The start date of the execution of the tasks was June 22,
and the end of the internship it was scheduled for August 21. It was planned to take
a break between July 10 and July 20. Also, it was planned to continue polishing
details during the first semester.

Figure 6.3: GANTT Chart.

CHAPTER 7. ECONOMIC PRE-FEASIBILITY
STUDY

7.1. Cost study

In this section is considered the cost derived from the work of the software developer,
or the intern student, and the supervisors. The corresponding labour costs are
described in the following table:

LABOUR WORKING
HOURS

UNITARY
COST (£/h)

NATIONAL IN-
SURANCE (£)

TOTAL
COST (£)

DEVELOPER 442 16.82 892.13 8,326.57

SUPERVISOR 27 31.26 101.28 945.30

SUBTOTAL 9,271.87

Table 7.1: Labour costs.

In the table 7.1, it has been considered the salary of a Biomedical Engineer and of a
Senior Researcher in the UK. It has been considered an entry level average salary
per year of £27,761 as a Biomedical Engineer. And it has been taken the average
salary of a Senior Researcher, which is £51,590. Last considerations have been that
the total number of hours worked per year are 1,650 and the contribution to the
National Insurance is a 12% of gross salary [33].
It must be considered the hardware costs derived from the computer, the electricity
consumption costs and establishment costs. As the whole project was made with
open-source software, this involves no costs and thus does not appear in the estimate.
The linear depreciation is calculated to know the monetary value that the device
in question loses every month. Then, it has been calculated the real cost of each
product. It is also considered that the real cost is the cost of each device during the
time it has been working, the usage time. Knowing that the initial value of the HP
Pavilion Laptop 15-ck0xx was 1200=C, its estimated residual value, when its useful
life has already ended, is 300=C, and assuming a product lifetime of 48 months, these
are the results:

USAGE
(months)

DEPRECIATION
(=C/month)

REAL COST
(=C)

POWER
(Wh)

LAPTOP 7 18.75 175 90

MONITOR 7 1.88 14.58 40

DESKTOP COM-
PUTERS

11 176.25 534.41 200

SUBTOTAL 723.99

Table 7.2: Hardware costs.

It has been also considered an HP monitor that was used to work as a second screen

43

44 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

with an initial value of 120=C, an estimated residual value of 30=C and a product
lifetime of 48 months. And finally, four desktop computers used by the supervisors.
Considering an initial value of £2,500 in average with a 25% of depreciation per year
rate and five years expectancy, the residual value for each is of zero. It has been
considered that Rachel supervises the project for 7 months and Yo and Daniela for
two months. In the table, all the quantities have been expressed in euros.

To calculate the electricity consumption costs, it was searched the power (in watts)
of the electronic components used to carry out the project. In 2020, the fixed price of
a general consumption rate was 0.1527=C/kWh. The power consumption of the laptop
was 90Wh and of the screen monitor was 40Wh. And the power consumption of the
desktop computers was 200Wh. Therefore, the total electricity consumption cost of
the project is 9.60=C.

Finally, it has been assumed that the developer and supervisors work from home.
The total establishment costs are 5,400=C and considers 300=C/month each home
office.
A summary table of all the costs analysed is presented to obtain the final cost of the
project:

COST TYPE

LABOUR COSTS 10,810.66=C

HARDWARE COSTS 723.99=C

SOFTWARE COSTS 0

ELECTRICITY CONSUMPTION COSTS 9.60=C

ESTABLISHMENT COSTS 5,400=C

TOTAL 16,944.25=C

Table 7.3: Final cost of the project.

CHAPTER 8. ENVIRONMENTAL IMPACT

The impact in the environment the software may cause is considered negligible
as long as it runs in the local client machine and does not require any server.
Thus, we can consider its process unnoticeable among the other programs being
simultaneously executed.

The development impact can be estimated by summing up the consumption of the
main tool, a laptop, and the monitor screen plus the desktop computers. CO2 emis-
sions were estimated by considering the factor of CO2 emission in Spain provided by
the European Environment Agency, 265.4 g CO2/kWh [34].

DEVICES WORKING
HOURS

CONSUMPTION EMISSION ESTIMATE

LAPTOP 442 90 W 10,557.6 g

MONITOR 442 40 W 4,692.3 g

DESKTOP
COMPUTERS

27 200 W 1,433.2 g

TOTAL 16,683.1 g CO2

Table 8.1: Development estimate CO2 emission.

Finally, the estimated impact of producing the hardware components for the project
has also been collected. From the website of the main programmer laptop the
CO2 footprint is estimated to be 200-350 kgCO2e for the laptop and 390-940 kgCO2e
for the monitor. From the same website, the estimated impact for a desktop PC is
about 300-1500 kgCO2e. Considering product lifetime of 48 months, the impact is
negligible.

45

CHAPTER 9. LICENSE

InterMineR-Cytoscape Shiny interface is open-source software, hold by the GNU
General Public License (GPL) version 3. This license allows commercial use and
modification of the software. The derivations or modified versions can be distributed.
Copies of the original software or instructions to obtain copies must be distributed
with the software. The software under GPL cannot be under MIT license of BSD
type license. In this project, as some of the libraries imported are under GPL license,
the software is distributed under GPL.

In the git repository, a file named CREDITS.md contains the license from all the
libraries that haven been used in the project. The complete text of the license can
also be found in the repository in the file LICENSE.

46

https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/celions/InterMineR-Cytoscape.git

CHAPTER 10. FUTURE EXTENSIONS

Although InterMineR and Cytoscape were perfectly functional separately, the lack of
a user interface between them was making tedious to use them together. InterMineR
Cytoscape Shiny interface is the first version of this application. In this section,
there are some possible improvements for the following project developers.

Going tab by tab:

• In the Query Builder tab, some paths give an error due to the exceptions in
the management of the capital letters (see in the appendix B.8). Some of the
exceptions have been captured and treated but some others have not been
detected. For this, somebody with Java and JavaScript knowledge could review
how the Query Builder works from the web services and do the same in R.
Improvements in usability and user-friendliness could be found if more people
test the interface.

• In the Run your Query tab, it is desired to increase the height of the table to
see more rows which cannot be done directly from R Studio.

• In the Overlay additional data tab, it is desired to find a more efficient way
to edit or delete overlays by the user. Currently, the user can visualize the
changes in the body’s node through a table. In the table are displayed by rows
the changes of each node, one by one. The user can select these rows and delete
them, removing the changes in the properties and returning to the default
value of colour, shape, or size of the body’s node. The table enables multiple
selections; however, this must be done by clicking each row and cannot be done
by click and drag.

Other future lines for the interface are incorporating the InterMine lists and extend
the filters.

By including the lists functions of the InterMineR package, developed during the
internship, the user could access saved lists from the personal account or predefined
lists. If it is desired, in the Visualize your Results tab, the user could save out
selected nodes as a list in the personal account.

Additionally, it has been shown necessary to incorporate the possibility of doing
operations such as union, intersect, difference, and subtract when applying filters in
the Visualize your results and Overlay additional data tab.

The way InterMine queries are constructed means it is sometimes difficult to get all
the data into a single query. In the future, it must be explored the possibility to run
simultaneous queries or load defined queries for overlay.

Finally, it could be interesting to add the possibility to edit saved networks when
they are uploaded in the last tab, Saved Networks.

47

CONCLUSIONS

The work on the list manager has been merged and released to the Bioconductor
version of InterMineR R package.

Regarding to InterMineR Cytoscape interface, after having developed the entire
app and tested its behaviour, the result has been appreciated as satisfactory. The
application meets all the initial requirements:

• Mines compatibility: All the InterMines are available. In the results, use cases
for HumanMine and CovidMine databases have been presented.

• Query Builder: As shown in the use cases, the user can select templates and
edit their constraint values or build more complex queries from scratch.

• Interactive and intuitive visualizations: The user can filter the results inter-
acting with a first Cytoscape network. And, in a second tab, the user can edit
the colour, shape and size of the nodes according to attributes. Adding more
edition tools could be considered as a feature extension.

• Dynamic and reactive user interface: The user can go back and change options
from previous tabs.

• Versatility: The application may be run in most desktop environments. This
makes InterMineR Cytoscape Interface an universal application.

It is an open source application and so this enables the implementation of new
functionalities.

The software development has required from a constant programming and revision
of the results. The current situation has led us, my supervisors and myself, to work
each one from home. Without the possibility to be face-to-face, a good organisation
and agreeing weekly virtual meetings have been keys for the success.

An intensive investment of time has needed to learn object-oriented programming
with R but also to do research about Cytoscape and all the R packages used. Nev-
ertheless, the parts with the highest workload have been to communicate the user
with the web-services following the HTTP protocol, designing the app to integrate
correctly Cytoscape and document all the work done. By the other hand, I have
ended the project mastering R Shiny and its complementary packages, and acquiring
a lot of experience contributing in an open source big project with a great community
of developers.

48

BIBLIOGRAPHY

[1] RN. Smith, J. Aleksic, D. Butano, A. Carr, S. Contrino, F. Hu, M. Lyne, R. Lyne,
A. Kalderimis, K. Rutherford, R. Stepan, J. Sullivan, M. Wakeling, X. Watkins,
and G. Micklem. Intermine: a flexible data warehouse system for the integration
and analysis of heterogeneous biological data. Bioinformatics, 28(23):3163–
3165, 2012. 2

[2] S. Ranganathan, M. Gribskov, and K. Nakai. Applications, volume 3. Encyclo-
pedia of Bioinformatics and Computational Biology, 3:938–952, 2019. 7

[3] R. Lyne et al. Cross-organism analysis using intermine. Genesis, 53(8):547–560,
2015. 7

[4] BioCyc. Guide to The BioCyc Database Collection. https://biocyc.org/
biocyc-guide.shtml. Online; accessed 5 June 2020. 7

[5] Michael Cornell, Norman Paton, Shengli Wu, Carole Goble, Crispin Miller, Paul
Kirby, Karen Eilbeck, Andy Brass, Andrew Hayes, and Stephen Oliver. Gims -
a data warehouse for storage and analysis of genome sequence and functional
data. Bioinformatic and Bioengineering, IEEE International Symposium on,
0:15, 03 2001. 7

[6] ONDEX. ONDEX Suite Features. http://ondex.sourceforge.net/feats.
php. Online; accessed 5 June 2020. 7

[7] GUS/Strategies-WDK. Computational Biology and Informatics Laboratory.
http://www.cbil.upenn.edu/node/86. Online; accessed 5 June 2020. 7

[8] Aaron Birkland and Golan Yona. Biozon: A system for unification, management
and analysis of heterogeneous biological data. BMC bioinformatics, 7:70, 02
2006. 7

[9] T. J. Lee, Yannick Pouliot, Valerie Wagner, Priyanka Gupta, David W. J. Stringer-
Calvert, J. D. Tenenbaum, and P. Karp. Biowarehouse: a bioinformatics
database warehouse toolkit. BMC Bioinformatics, 7:170 – 170, 2005. 7

[10] S. P. Shah, Xu T. Huang, Y., M. M. Yuen, J. Ling, and B. F Ouellette. Atlas
- a data warehouse for integrative bioinformatics. bmc bioinformatics. BMC
Bioinformatics, 6(34), 2005. 7

[11] Damian Smedley, Syed Haider, Steffen Durinck, and Luca Pandini et al. The
BioMart community portal: an innovative alternative to large, centralized data
repositories. Nucleic Acids Research, 43(W1):W589–W598, 04 2015. 7

[12] Omar S Harb and David S Roos. The eukaryotic pathogen databases: a func-
tional genomic resource integrating data from human and veterinary parasites.
Methods in molecular biology (Clifton, N.J.), 1201:1—18, 2015. 7

[13] Thomas Triplet and Gregory Butler. Systems biology warehousing: Challenges
and strategies toward effective data integration. 01 2011. 7

49

https://biocyc.org/biocyc-guide.shtml
https://biocyc.org/biocyc-guide.shtml
http://ondex.sourceforge.net/feats.php
http://ondex.sourceforge.net/feats.php
http://www.cbil.upenn.edu/node/86

50 Development of a GUI for InterMineR and Cytoscape to make biological databases FAIR.

[14] Mark Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gaby Appleton,
Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Olavo
Bonino da Silva Santos, Philip Bourne, Jildau Bouwman, Anthony Brookes,
Tim Clark, Merce Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris
Evelo, Richard Finkers, and Barend Mons. The fair guiding principles for
scientific data management and stewardship. Scientific Data, 3, 03 2016. 8

[15] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open
source software for exploring and manipulating networks. https://gephi.
org/publications/gephi-bastian-feb09.pdf, 2009. Online; accessed 5 June
2020. 9

[16] David Auber, Daniel Archambault, Romain Bourqui, Antoine Lambert, Morgan
Mathiaut, Patrick Mary, Maylis Delest, Jonathan Dubois, and Guy Melançon.
The tulip 3 framework: A scalable software library for information visualization
applications based on relational data. 01 2012. 9

[17] Andrej Mrvar and Vladimir Batagelj. Analysis and visualization of large
networks with program package pajek. Complex Adaptive Systems Modeling, 4,
04 2016. 9

[18] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, 2000. 9

[19] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape:
a software environment for integrated models of biomolecular interaction net-
works. Genome research, 13(11):2498–2504, 2003. (software website). 9

[20] Jennifer Chang. Developing an integrated system for biological network explo-
ration. Graduate Theses and Dissertations, 15498, 2017. 9

[21] Georgios Pavlopoulos, David Paez Espino, Nikos Kyrpides, and Ioannis Il-
iopoulos. Empirical comparison of visualization tools for larger-scale network
analysis. Advances in Bioinformatics, 2017, 07 2017. 10

[22] Ugur Dogrusoz, Alper Karacelik, Ilkin Safarli, Hasan Balci, Leonard Dervishi,
and Metin Siper. Efficient methods and readily customizable libraries for
managing complexity of large networks. PLOS ONE, 13:e0197238, 05 2018. 10

[23] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus.
Knowledge discovery in databases: An overview. AI Magazine, 13(3):57, Sep.
1992. 11

[24] Ensembl. Biomart. https://m.ensembl.org/info/data/biomart/index.
html, 2021. Online; accessed 5 June 2020. 11

[25] David Otasek, John Morris, Jorge Bouças, Alexander Pico, and Barry Demchak.
Cytoscape automation: Empowering workflow-based network analysis. Genome
Biology, 20, 09 2019. 12

https://gephi.org/publications/gephi-bastian-feb09.pdf
https://gephi.org/publications/gephi-bastian-feb09.pdf
https://m.ensembl.org/info/data/biomart/index.html
https://m.ensembl.org/info/data/biomart/index.html

[26] Julia Gustavsen, Shraddha Pai, Ruth Isserlin, Barry Demchak, and Alexander
Pico. Rcy3: Network biology using cytoscape from within r. F1000Research,
8:1774, 11 2019. 12

[27] The Human Protein Atlas. Tissue expression of PAX6 - Summary. https:
//www.proteinatlas.org/ENSG00000007372-PAX6/tissue. Online; accessed
23 March 2021. 33

[28] T M Frayling, J C Evans, M P Bulman, E Pearson, L Allen, K Owen, C Bingham,
M Hannemann, M Shepherd, S Ellard, and A T Hattersley. beta-cell genes and
diabetes: molecular and clinical characterization of mutations in transcription
factors. Diabetes, 50(suppl 1):S94, 2001. 38

[29] Lan Shao, Boya Feng, Yuying Zhang, Huanjiao Zhou, Weidong Ji, and Wang
Min. The role of adipose-derived inflammatory cytokines in type 1 diabetes.
Adipocyte, 5(3):270–274, 2016. 38

[30] Soo Lim, Jae Bae, Hyuk-Sang Kwon, and Michael Nauck. Covid-19 and dia-
betes mellitus: from pathophysiology to clinical management. Nature Reviews
Endocrinology, 17, 11 2020. 38

[31] Yunzhou Dong, Conrad Fernandes, Yanjun Liu, Yong Wu, Hao Wu, Megan L
Brophy, Lin Deng, Kai Song, Aiyun Wen, Scott Wong, Daoguang Yan, Rheal
Towner, and Hong Chen. Role of endoplasmic reticulum stress signalling in
diabetic endothelial dysfunction and atherosclerosis. Diabetes and Vascular
Disease Research, 14(1):14–23, 2017. PMID: 27941052. 39

[32] Tobias Boettler and Matthias Herrath. Protection against or triggering of
type 1 diabetes? different roles for viral infections. Expert review of clinical
immunology, 7:45–53, 01 2011. 39

[33] GOV-UK. National Insurance rates and categories. https://www.gov.uk/
national-insurance-rates-letters. Online; accessed 19 April 2021. 43

[34] European Environment Agency - EEA. CO2 emission intensity. https://www.
eea.europa.eu/data-and-maps/daviz/. Online; accessed 19 April 2021. 45

https://www.proteinatlas.org/ENSG00000007372-PAX6/tissue
https://www.proteinatlas.org/ENSG00000007372-PAX6/tissue
https://www.gov.uk/national-insurance-rates-letters
https://www.gov.uk/national-insurance-rates-letters
https://www.eea.europa.eu/data-and-maps/daviz/
https://www.eea.europa.eu/data-and-maps/daviz/

APPENDICES

TFG TITLE: Development of a GUI for InterMineR and Cytoscape to make biological
databases FAIR.

DEGREE: Biomedical Engineering Degree

AUTHOR: Celia Sánchez Laorden

ADVISORS: Dr Rachel Lyne
Dr Gos Micklem

SUPERVISOR: Dr Santiago Marco

DATE: June 13, 2021

APPENDIX A. TASK 1: IMPROVING INTERMINER

A.1. Classes

A.1.1. ListManager-class.R

1 #’ @rdname webservice -class
2 #’ @import S4Vectors
3 #’ @import methods
4 #’ @export
5
6 setClass(
7 "ListManager",
8 representation(
9 DEFAULT_LIST_NAME = "character",

10 DEFAULT_DESCRIPTION = "character",
11
12 LIST_PATH = "character",
13 INTERSECTION_PATH = "character",
14 UNION_PATH = "character",
15 DIFFERENCE_PATH = "character",
16 SUBTRACTION_PATH = "character",
17 mine = "character",
18 token = "character"
19)
20)

Listing A.1: ListManager class

A.1.2. webservice-class.R

1 #’ @rdname webservice -class
2 #’ @import S4Vectors
3 #’ @import methods
4 #’ @export
5
6 setClass(
7 "Service",
8 representation(
9 mine = "character",

10 token = "character"
11)
12)

Listing A.2: webservice class

A.1.3. InterMineR-class.R

1 #’ @rdname InterMineR -class
2 #’ @import S4Vectors
3 #’ @import methods
4 #’ @export
5
6 setClass(
7 "InterMineR",
8 representation(
9 name = "character",

10 description = "character",
11 select = "character",
12 orderBy = "list",
13 where = "list"
14)
15)

Listing A.3: InterMineR class

2

A.2. Methods and Functions

A.2.1. initInterMine

1 #’ @export
2 ##0 - Initilization
3 # initialize the base and token for future reuse
4 initInterMine <- function(mine = listMines()["HumanMine"], token=""){
5 im <- new("Service",mine = mine , token = token)
6 return(im)
7 }

Listing A.4: InterMine.R initInterMine

A.2.2. list_manager

1 #’ @rdname webservice -methods
2 #’ @exportMethod list_manager
3 setGeneric("list_manager", function(object ,...){
4 standardGeneric("list_manager")
5 })
6
7 #’ @rdname webservice -methods
8 #’ @exportMethod list_manager
9 setMethod(

10 "list_manager",
11 signature(object = "Service"),
12 function(object ,...){
13 return(new("ListManager",
14 DEFAULT_LIST_NAME = ’my_list’,
15 DEFAULT_DESCRIPTION = ’List created with R client library’,
16
17 LIST_PATH = ’/lists’,
18 INTERSECTION_PATH = ’/lists/intersect/json’,
19 UNION_PATH = ’/lists/union/json’,
20 DIFFERENCE_PATH = ’/lists/diff/json’,
21 SUBTRACTION_PATH = ’/lists/subtract/json’,
22 mine = object@mine ,
23 token = object@token))
24
25 })

Listing A.5: webservice-methods.R list_manager

A.2.3. ListManager-methods.R

1 #’ @name ListManager -methods
2 #’ @import httr
3
4 #’ @aliases get_list -methods
5 #’ @aliases get_list ,ListManager -method
6 #’ @aliases delete_lists -methods
7 #’ @aliases delete_lists ,ListManager -method
8 #’ @aliases create_list -methods
9 #’ @aliases create_list ,ListManager -method

10 #’ @aliases intersect -methods
11 #’ @aliases intersect ,ListManager -method
12 #’ @aliases union -methods
13 #’ @aliases union ,ListManager -method
14 #’ @aliases difference -methods
15 #’ @aliases difference ,ListManager -method
16 #’ @aliases subtract -methods
17 #’ @aliases subtract ,ListManager -method
18
19 #GET_api_list: returns the response object of the Request
20 #’ @rdname ListManager -methods
21 #’ @export
22 setGeneric("GET_api_list", function(object ,...){
23 standardGeneric("GET_api_list")
24 })
25
26 #’ @rdname ListManager -methods
27 #’ @exportMethod GET_api_list
28 setMethod(
29 "GET_api_list",
30 signature(object = "ListManager"),
31 function(object ,...){
32 GET(paste0(object@mine , "/service", object@LIST_PATH), add_headers(Authorization = paste("Token", object@token ,

sep = " ")))
33 })
34

35 #’ @rdname ListManager -methods
36 #’ @export
37 setGeneric("get_list", function(object ,...){
38 standardGeneric("get_list")
39 })
40
41 #’ @rdname ListManager -methods
42 #’ @exportMethod get_list
43 setMethod(
44 "get_list",
45 signature(object = "ListManager"),
46 function(object , list_name){
47 resp_list <- GET_api_list(object)
48 content_list_parsed <- content(resp_list , "parsed", encoding = "ISO -8859-1")
49
50 exist <- FALSE
51
52 for (list in content_list_parsed$lists){
53 if(list$name == list_name){
54 return(list)
55 exist <- TRUE
56 }
57 }
58
59 if(exist == FALSE){
60 warning(paste0("List", list_name , "doesn ’t exist."))
61 }
62 })
63
64 #get_unused_list_name: Checks if a list exists by name and it it does it, provides a default name
65 #’ @rdname ListManager -methods
66 #’ @export
67 setGeneric("get_unused_list_name", function(object ,...){
68 standardGeneric("get_unused_list_name")
69 })
70
71 #’ @rdname ListManager -methods
72 #’ @exportMethod get_unused_list_name
73 setMethod(
74 "get_unused_list_name",
75 signature(object = "ListManager"),
76 function(object , given_name = ’my_list’){
77 resp_list <- GET_api_list(object)
78 content_list_parsed <- content(resp_list , "parsed", encoding = "ISO -8859-1")
79
80 list_names <- list()
81
82 for (list in content_list_parsed$lists){
83 list_names <- append(list_names , list$name)
84 }
85 counter <- 1
86
87 name <- object@DEFAULT_LIST_NAME
88
89 if(is.element(given_name , list_names)){
90
91 given_name <- object@DEFAULT_LIST_NAME
92
93 while(is.element(name , list_names)){
94
95 name <- paste0(object@DEFAULT_LIST_NAME , counter)
96 given_name <- name
97 counter <- counter+1
98 }
99 }

100
101 return(given_name)
102 })
103
104 #’ @rdname ListManager -methods
105 #’ @export
106 setGeneric("delete_lists", function(object ,...){
107 standardGeneric("delete_lists")
108 })
109
110 #’ @rdname ListManager -methods
111 #’ @exportMethod delete_lists
112 setMethod(
113 "delete_lists",
114 signature(object = "ListManager"),
115 function(object , lists){
116 #all the names
117 resp_list <- GET_api_list(object)
118 content_list_parsed <- content(resp_list , "parsed", encoding = "ISO -8859-1")
119
120 all_names <- list()
121
122 for (list in content_list_parsed$lists){
123 all_names <- append(all_names , list$name)
124 }
125
126 #all the names of template lists
127
128 url2 <- paste0(object@mine , "/service", object@LIST_PATH)
129 resp_list2 <- GET(url2)
130 content_list_parsed2 <- content(resp_list2 , "parsed", encoding = "ISO -8859-1")
131
132 all_names_templates <- list()
133

134 for (list in content_list_parsed2$lists){
135 all_names_templates <- append(all_names_templates , list$name)
136 }
137
138 for (l in lists){
139 name <- l
140 if (!(name %in% all_names)){
141 warning(sprintf("%s does not exist - skipping", name))
142 next
143 }
144 if (name %in% all_names_templates){
145 warning(sprintf("%s is a template list that cannot be deleted", name))
146 next
147 }
148 warning(sprintf("deleting %s", name))
149
150 uri <- paste0(object@mine ,"/service", object@LIST_PATH , "?name=", name , "&token=", object@token)
151
152 DELETE(uri, add_headers(Authorization = paste("Token",object@token , sep = " ")))
153
154 }
155
156 #refresh lists/update
157
158 #PATCH(uri,add_headers(Authorization = paste("Token",Token , sep = " "))) Gives status code 501
159
160 #PUT(uri,add_headers(Authorization = paste("Token",Token , sep = " "))) Gives status code 400
161
162 #GET(paste0(object@mine ,"/service", ’/lists ’, "?", "&token=", object@token), add_headers(Authorization = paste("

Token", object@token , sep = " ")))
163 })
164
165 #’ @rdname ListManager -methods
166 #’ @export
167 setGeneric("create_list", function(object ,...){
168 standardGeneric("create_list")
169 })
170
171 #’ @rdname ListManager -methods
172 #’ @exportMethod create_list
173 setMethod(
174 "create_list",
175 signature(object = "ListManager"),
176 function(object , content , list_type , name = NULL , description = NULL , organism = NULL){
177
178 uri <- paste0(object@mine , "/service/lists?")
179 if(is.null(name)){
180 name <- get_unused_list_name(object) #this function is created in GET_api_list -get_list -get_unused_list_name.R
181 }
182 else{
183 name <- get_unused_list_name(object , name)
184 }
185
186 if(is.null(description)){
187 description <- "List created with R Studio client library"
188 }
189
190 if(is.list(content)){
191 ids <- list()
192 for (row in content) {
193 ids <- append(ids, row)
194 }
195 content <- NULL
196 for (id in ids) {
197 content <- paste(content , id, sep = ",")
198 }
199 content <- substr(content , 2, nchar(content))
200 }
201 POST(url = paste0(uri, "name=", name , "&description=", URLencode(description),"&type=", list_type , "&organism=",

organism),
202 body = content , #these are ids
203 add_headers(Authorization = paste("Token",object@token , sep = " "),
204 ’Content -Type’ = "text/plain"))
205 })
206
207 #do_operation: creates a new list results of an operation , it shouldn ’t be called directly
208 #’ @rdname ListManager -methods
209 #’ @export
210 setGeneric("do_operation", function(object ,...){
211 standardGeneric("do_operation")
212 })
213
214 #’ @rdname ListManager -methods
215 #’ @exportMethod do_operation
216 setMethod(
217 "do_operation",
218 signature(object = "ListManager"),
219 function(object , path , operation , lists , name , description , tags){
220
221 lists_names <- NULL
222
223 for (l in lists){
224 lists_names <- paste(lists_names , l, sep = ";")
225 }
226
227 lists_names <- substr(lists_names , 2, nchar(lists_names))
228
229 list_names_description <- make_list_names(lists)
230

231 if (is.null(description)){
232 description <- sprintf("%s of %s", operation , paste(list_names_description , collapse = " "))
233 }
234
235 if (is.null(name)){
236 name <- get_unused_list_name(object)
237 }else{
238 name <- get_unused_list_name(object , name)
239 }
240
241 uri <- paste0(object@mine ,
242 "/service",
243 path ,
244 "?")
245
246 return(POST(paste0(uri, "name=", name , "&lists=", lists_names , "&description=", URLencode(description),"&tags=",

tags),
247 add_headers(Authorization = paste("Token",object@token , sep = " "))))
248 })
249
250 #make_list_names: turns a list of things into a list of list names
251 make_list_names <- function(lists){
252 list_names <- list()
253 for (l in lists){
254 try(list_names <- append(list_names , l))
255 #maybe more assumptions are needed
256 }
257 return(list_names)
258 }
259
260 #’ @rdname ListManager -methods
261 #’ @export
262 setGeneric("intersect", function(object ,...){
263 standardGeneric("intersect")
264 })
265
266 #’ @rdname ListManager -methods
267 #’ @exportMethod intersect
268 setMethod(
269 "intersect",
270 signature(object = "ListManager"),
271 function(object , lists , name = NULL , description = NULL , tags = list()){
272 return(do_operation(object , object@INTERSECTION_PATH , "Intersection", lists , name , description , tags))
273 })
274
275 #’ @rdname ListManager -methods
276 #’ @export
277 setGeneric("union", function(object ,...){
278 standardGeneric("union")
279 })
280
281 #’ @rdname ListManager -methods
282 #’ @exportMethod union
283 setMethod(
284 "union",
285 signature(object = "ListManager"),
286 function(object , lists , name = NULL , description = NULL , tags = list()){
287 return(do_operation(object , object@UNION_PATH , "Union", lists , name , description , tags))
288 })
289
290 #’ @rdname ListManager -methods
291 #’ @export
292 setGeneric("difference", function(object ,...){
293 standardGeneric("difference")
294 })
295
296 #’ @rdname ListManager -methods
297 #’ @exportMethod difference
298 setMethod(
299 "difference",
300 signature(object = "ListManager"),
301 function(object , lists , name = NULL , description = NULL , tags = list()){
302 return(do_operation(object , object@DIFFERENCE_PATH , "Difference", lists , name , description , tags))
303 })
304
305 #’ @rdname ListManager -methods
306 #’ @export
307 setGeneric("subtract", function(object ,...){
308 standardGeneric("subtract")
309 })
310
311 #’ @rdname ListManager -methods
312 #’ @exportMethod subtract
313 setMethod(
314 "subtract",
315 signature(object = "ListManager"),
316 function(object , lefts , rights , name = NULL , description = NULL , tags = list()){
317
318 SUBTRACTION_PATH <- "/lists/subtract/json"
319
320 left_names_description <- make_list_names(lefts)
321
322 right_names_description <- make_list_names(rights)
323
324 left_names<-NULL
325 for (l in lefts){
326 left_names <- paste(left_names , l, sep = ";")
327 }
328

329 left_names <- substr(left_names , 2, nchar(left_names))
330
331 right_names <- NULL
332
333 for (l in rights){
334 right_names <- paste(right_names , l, sep = ";")
335 }
336
337 right_names <- substr(right_names , 2, nchar(right_names))
338
339 if (is.null(description)){
340 description <- sprintf("Subtraction of %s from %s",
341 paste(right_names_description ,sep = "and"),
342 paste(left_names_description , sep = "and"))
343 }
344
345 if (is.null(name)){
346 name <- get_unused_list_name(object)
347 }else{
348 name <- get_unused_list_name(object ,name)
349 }
350
351 uri <- paste0(object@mine , "/service", object@SUBTRACTION_PATH , "?")
352
353 return(POST(paste0(uri, "name=", name , "&description=",
354 URLencode(description), "&references=", left_names , "&subtract=", right_names , "&tags=", tags),
355 add_headers(Authorization = paste("Token", object@token , sep = " "))))
356
357 })

Listing A.6: ListManager-methods.R

A.3. Documentation

A.3.1. ListManager-class.Rd

1 \docType{class}
2
3 \name{ListManager -class}
4
5 \alias{ListManager -class}
6
7 \title{
8 ListManager class provides methods to manage list contents and operations.
9 }

10
11 \description{
12 ListManager constitutes a class used to store the information required for managing lists contents and performing

operations. Specifically , it contains information about:
13
14 1) the default list name and description ,
15
16 2) the different URL endpoints , and
17
18 3) the information of the WebService.
19 }
20
21 \section{Creating Objects}{
22 Objects can be created using the function \code{\link{list_manager}}, which is a webservice method.
23 }
24
25 \section{Slots}{
26 \describe{
27 \item{name}{
28 Assign with a character string giving a name to the query. Pre-fixed with "".
29 }
30 \item{DEFAULT_LIST_NAME}{
31 Assign with a character string , it is used when the names is not specified or the list exists.
32 }
33 \item{DEFAULT_DESCRIPTION}{
34 a character string that indicates that the list is created with the R client library.
35 }
36 \item{LIST_PATH}{
37 URL endpoint for storing lists.
38 }
39 \item{INTERSECTION_PATH}{
40 URL endpoint for intersecting lists.
41 }
42 \item{UNION_PATH}{
43 URL endpoint for the union of lists.
44 }
45 \item{DIFFERENCE_PATH}{
46 URL endpoint for the difference of lists.
47 }
48 \item{SUBTRACTION_PATH}{
49 URL endpoint for the subtraction lists.
50 }
51 \item{mine}{

52 URL of the an InterMine Webservice.
53 }
54 \item{token}{
55 API access key.
56 }
57 }
58 }
59
60 \section{Details}{
61 ListManager class specifies an object in which the the common inputs to make an API request are stored.
62 }
63
64 \author{
65 InterMine Team
66 }
67
68 \seealso{
69 \code{\link{list_manager}}, \code{\link{ListManager -methods}}, \code{\link{webservice -methods}}
70 }

Listing A.7: Example of Rd file ListManager-class.Rd

A.3.2. ListManager-class documentation rendered to HTML.

InterMineR Workshop Use Case
We are going to re-create the workflow we did using the web interface using the R API.

The basic steps are:

1. Load the InterMine library and choose an InterMine to query.
2. Query 1: Diabetes Genes: Fetch a list of genes that are associated with diabetes
3. Query 2: PAX6 + Pancreas: Fetch a list of genes that have medium or high expression in the pancreas and are in our PAX6

targets list
4. Intersection: Find which genes are present in both Query 1 and Query2.
5. GWAS: Compare the intersection of the previous query with results from GWAS studies.

Getting started - Load InterMineR and choose an InterMine

Load the InterMine library. If it's not already installed, visit https://github.com/intermine/InterMineR.git and follow the instructions to
install.

In []:
library(devtools)
install_git("https://github.com/intermine/InterMineR.git")

In [3]:
library(InterMineR)

In []:
#these packages are required
library(httr)
library(XML)

We want to query human data - so let's look and see what InterMines are available:

In [4]:
listMines()

Warning message:
"package 'InterMineR' was built under R version 3.6.2"

BMAP
'https://bmap.jgi.doe.gov/bmapmine/'
BeanMine
'https://mines.legumeinfo.org/beanmine'
BovineMine
'http://genomes.missouri.edu/bovinemine'
CHOmine
'https://chomine.boku.ac.at/chomine'
ChickpeaMine
'https://mines.legumeinfo.org/chickpeamine'
CovidMine
'https://test.intermine.org/covidmine/'
CowpeaMine
'https://mines.legumeinfo.org/cowpeamine'
FawMine
'http://insectmine.org:8080/fawmine'
FlyMine
'https://www.flymine.org/flymine'
GrapeMine

A.4. Results

Okay, let's select HumanMine from the list:

In [5]:
humanMine <- listMines()["HumanMine"] #select humanmine
humanMine #print out the value to see what's inside

Okay, now let's tell InterMineR that we want to use HumanMine for our queries. We start by importing the Service class.

Important: you'll need an API token for this part so you can access your HumanMine account. You can get your token by logging into
HumanMine and going to the account details tab within MyMine. Cut and paste your token into the code below.

'http://urgi.versailles.inra.fr/GrapeMine'
HumanMine
'https://www.humanmine.org/humanmine'
HymenopteraMine
'http://128.206.116.3:8080/hymenopteramine'
IndigoMine
'http://www.cbrc.kaust.edu.sa/indigo'
LegumeMine
'https://mines.legumeinfo.org/legumemine'
LocustMine
'http://locustmine.org:8080/locustmine'
MaizeMine
'http://maizemine.rnet.missouri.edu:8080/maizemine'
MedicMine
'http://medicmine.jcvi.org/medicmine'
MitoMiner
'http://mitominer.mrc-mbu.cam.ac.uk/release-4.0'
ModMine
'http://intermine.modencode.org/release-33'
MouseMine
'http://www.mousemine.org/mousemine'
OakMine
'https://urgi.versailles.inra.fr/OakMine_PM1N'
PeanutMine
'https://mines.legumeinfo.org/peanutmine'
PhytoMine
'https://phytozome.jgi.doe.gov/phytomine/'
PlanMine
'http://planmine.mpi-cbg.de/planmine'
RatMine
'http://ratmine.mcw.edu/ratmine'
RepetDB
'http://urgi.versailles.inra.fr/repetdb'
SoyMine
'https://mines.legumeinfo.org/soymine'
TargetMine
'https://targetmine.mizuguchilab.org/targetmine'
ThaleMine
'https://bar.utoronto.ca/thalemine'
WheatMine
'https://urgi.versailles.inra.fr/WheatMine'
WormMine
'http://intermine.wormbase.org/tools/wormmine/'
XenMine
'http://www.xenmine.org/xenmine'
YeastMine
'https://yeastmine.yeastgenome.org/yeastmine'
ZebrafishMine
'http://zebrafishmine.org'

HumanMine: 'https://www.humanmine.org/humanmine'

In [6]:
Token <- "F16793D0k4BaF5hbe3s0" #insert here your API Acess Key
im <- initInterMine(listMines()["HumanMine"], token = Token)
class(im)

First Query: Diabetes Genes

Our first query will be to select all human genes that are associate with diabetes. This will require two constraints:

1. Ensure all genes returned are Home sapiens genes (HumanMine contains some non-human genes for homology query
purposes)

2. Restrict results to genes that are associated with diabetes.

In [7]:
query1Diabetes <- setQuery(
 # here we're choosing which columns of data we'd like to see
 select = c("Gene.primaryIdentifier", "Gene.symbol"),
 # set the logic for constraints. The first constraint is the first path+operator+value,
 # e.g. Gene.organism.name = Homo sapiens, and the second constraint is the combination
 # of the second path+operator+value, e.g. Gene.diseases.name CONTAINS diabetes
 where = setConstraints(
 paths = c("Gene.organism.name", "Gene.diseases.name"),
 operators = c("=", "CONTAINS"),
 values = list("Homo sapiens","diabetes")
)
)

Question to ponder: why did we use = for our Homo sapiens constraint, but CONTAINS for our diabetes constraint?

Anyway, we've set the query up, so now let's actually run it:

In [8]:
query1DiabetesResults <- runQuery(im,query1Diabetes)

and let's print out the first few results to make sure it looks like we'd expect:
head(query1DiabetesResults)

We now need to save the list to our intermine account so we can use it again in a later query. The ListManager class provides
methods to manage list contents and operations.

In []:
im_list <- list_manager(im)

To the create_list method, we pass the primary identifiers. Before, we delete any list with the same name we want to use for the
new list.

In []:
ids_query1DiabetesResults <- list(query1DiabetesResults["Gene.primaryIdentifier"])

Gene.primaryIdentifier Gene.symbol

1056 CEL

10644 IGF2BP2

11132 CAPN10

1234 CCR5

1493 CTLA4

1636 ACE

ids_query1DiabetesResults <- list(query1DiabetesResults["Gene.primaryIdentifier"])
delete_lists(im_list,c("diabetesGenes"))
create_list(im_list,ids_query1DiabetesResults,list_type="Gene", name="diabetesGenes")

In []:
print(get_list(im_list,"diabetesGenes"))

Query 2: Pax6 targets that have high expression in the Pancreas
This time we're creating another query, but with slightly more complex constraints. We're looking for genes that are in the public
HumanMine list PL_Pax6_Targets, that are also expressed in the pancreas at a High or Medium level.

We'll need a few more constraints than we did in Query 1:

1. all Genes should be in the list PL_Pax6_Targets
2. Gene.proteinAtlasExpression.tissue.name should be equal to Pancreas
3. Gene.proteinAtlasExpression.level should be set to High OR Medium. This will require two constraints, one for

each of medium and high.

We'd also like to see a few more columns this time:

1. The Gene's primaryIdentifier and symbol
2. The following expression data from Protein Atlas:

Gene.proteinAtlasExpression.cellType
Gene.proteinAtlasExpression.level
Gene.proteinAtlasExpression.tissue.name

In [20]:
We don't want to see *all* genes and their expression.
Let's narrow it down a little by constraining it to genes that are of interest
query2UpInPancreasConstraint = setConstraints(
 paths = c("Gene",
 "Gene.proteinAtlasExpression.level",
 "Gene.proteinAtlasExpression.level",
 "Gene.proteinAtlasExpression.tissue.name"),
 operators = c("IN", rep("=", 3)),
 # each constraint is automatically given a code, allowing us to manipulate the
 # logic for the constraint.
 # So for us, constraints are set to codes A, B, C, D in order,
 # e.g. Code A: "Gene" should be "IN" the list named "PL_DiabetesGenes"
 # Code B: "Gene.proteinAtlasExpression.level" should be equal to "Medium"
 # Code C: "Gene.proteinAtlasExpression.level" should be equal to "High"
 # Code D: "Gene.proteinAtlasExpression.tissue.name" should be equal to Pancreas"
 #
 # Now, you might be thinking "how can the expression level be equal to both Medium
 # AND High?" The answer is - it can't, but take a quick look at the constraintLogic
 # we will set in the next code cell for an explanation
 values = list("PL_Pax6_Targets", "Medium", "High", "Pancreas")
)

Excellent - we've defined the constraints we want. We still need to choose which columns to view.

In [21]:
Create a new query
query2UpInPancreas = newQuery(
 # Choose which columns of data we'd like to see
 view = c("Gene.primaryIdentifier",
 "Gene.symbol",
 "Gene.proteinAtlasExpression.cellType",
 "Gene.proteinAtlasExpression.level",
 "Gene.proteinAtlasExpression.tissue.name"
),
 # set the logic for constraints. This means our pancreas expression level
 # is EITHER Medium (B) or High (C), but not both.
 # --
 # Note: Constraint logic only needs to be set if you wish to use OR. All other
 # constraints have AND logic applied by default.

 # constraints have AND logic applied by default.
 constraintLogic = "A and (B or C) and D"
)

Add the constraint to our expressed pancreas query (previously we just _defined_ the constraint)
query2UpInPancreas$where <- query2UpInPancreasConstraint

Remember, that was just setting up the query - we haven't run it yet

In [22]:
Now we have the query set up the way we want, let's actually *run* the query!
query2UpInPancreasResults <- runQuery(im = im, qry = query2UpInPancreas)

Show me the first few results please!
head(query2UpInPancreasResults)

Again, we save our results into a list in our account.

In []:
ids_query2UpInPancreasResults <- list(query2UpInPancreasResults["Gene.primaryIdentifier"])
delete_lists(im_list,c("UpinPancreas"))
create_list(im_list,ids_query2UpInPancreasResults,list_type="Gene", name="UpinPancreas")

In []:
print(get_list(im_list,"UpinPancreas"))

Intersection: Which genes overlap in Query1 and Query2?
Next, we used a list intersect to find those genes that are upregulated in the pancreas that are also associated with the disease
diabetes. We need to intersect the first (UpinPancreas) and second (diabetesGenes) lists that we created. We can do this using the
intersect method from the ListManager class.

In []:
delete_lists(im_list,c("intersectedList"))
print(intersect(im_list,c("UpinPancreas", "diabetesGenes"), "intersectedList"))

In []:
intersectedList = get_list(im_list,"intersectedList")
print(intersectedList)

Here, we can replicate what this method does:

In [23]:
Extract the primaryIdentifier columns from query1 (diabetes genes) and query 2 (upexpressed in p
ancreas)

A data.frame: 6 × 5

Gene.primaryIdentifier Gene.symbol Gene.proteinAtlasExpression.cellType Gene.proteinAtlasExpression.level Gene.proteinAtlasExpression.tissue.name

<chr> <chr> <chr> <chr> <chr>

10097 ACTR2 exocrine glandular cells Medium Pancreas

10097 ACTR2 islets of Langerhans Medium Pancreas

10196 PRMT3 exocrine glandular cells Medium Pancreas

10196 PRMT3 islets of Langerhans Medium Pancreas

1121 CHM exocrine glandular cells Medium Pancreas

1121 CHM islets of Langerhans Medium Pancreas

ancreas)
primaryIdentifiers.diabetes <- query1DiabetesResults[["Gene.primaryIdentifier"]]
primaryIdentifiers.pancreas <- query2UpInPancreasResults[["Gene.primaryIdentifier"]]

Find the intersection of the two lists of primary identifiers
diabetesAndPancreasGenes <- intersect(primaryIdentifiers.diabetes,primaryIdentifiers.pancreas)

Show the results
print(diabetesAndPancreasGenes)

GWAS: Compare the intersection above with results from GWAS studies

Finally, we fed the intersected list from above back into another query to see if there was any association of these genes with
diabetes phenotypes according to GWAS studies. Note that we now start our query from the GWAS class:

In [24]:
First, we set up the constraints. The last three constraints are the
diabetesAndPancreas result genes from our last query.
query3GWASConstraints <- setConstraints(
 paths = c("GWAS.results.pValue",
 "GWAS.results.phenotype",
 # using rep so we don't have to type this three times...
 rep("GWAS.results.associatedGenes.primaryIdentifier",3)
),
 operators = c("<=",
 "CONTAINS",
 rep("=",3)),
 values = list("1e-04", #A
 "diabetes",#B
 "3172", #C
 "6928", #D
 "6934") #E
)

Now we've set our constraints up nicely, let's choose which columns we want to view.

In [25]:
query3GWAS <- newQuery(
 # Quite a few columns this time!
 view = c("GWAS.results.associatedGenes.primaryIdentifier",
 "GWAS.results.associatedGenes.symbol", "GWAS.results.associatedGenes.name",
 "GWAS.results.SNP.primaryIdentifier", "GWAS.results.pValue", "GWAS.results.phenotype",
 "GWAS.firstAuthor", "GWAS.name", "GWAS.publication.pubMedId",
 "GWAS.results.associatedGenes.organism.shortName"),
 # set the logic for constraints. Remember that we want our results
 # to include any one of the three genes we found in the list of diabetes+pancreas genes
 # so we need to use some OR logic.
 constraintLogic = "A and B and (C or D or E)"
)

Add the constraints to the query, and then run it...

In [27]:
#add constraint
query3GWAS$where <- query3GWASConstraints
#run query
query3GWASResults <- runQuery(im, query3GWAS)

Now, let's view those results...

In [30]:
query3GWASResults

[1] "3172" "6928" "6934"

A data.frame: 46 × 10

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

3172 HNF4A hepatocyte nuclear factor 4 alpha

3172 HNF4A hepatocyte nuclear factor 4 alpha

3172 HNF4A hepatocyte nuclear factor 4 alpha

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

And let's take a look at the unique gene symbols that were returned:

In [33]:
GWASIds <- query3GWASResults["GWAS.results.associatedGenes.symbol"]
unique(GWASIds)

6934 TCF7L2 transcription factor 7 like 2

6934 TCF7L2 transcription factor 7 like 2

GWAS.results.associatedGenes.primaryIdentifier GWAS.results.associatedGenes.symbol GWAS.results.associatedGenes.name

<chr> <chr> <chr>

A data.frame: 2 × 1

GWAS.results.associatedGenes.symbol

<chr>

1 HNF4A

4 TCF7L2

APPENDIX B. TASK 2: SHINY INTERFACE

B.1. Welcoming message

1 <p></p>
2 <h1 style="text -align: center;">WELCOME TO InterMineR Cytoscape Interface</h1>
3 <h4 style="text -align: center;">An interactive open source software for the integration and analysis of InterMine data

warehouse getting the most out of Cytoscape visualizations.</h4>
4 <hr />
5 <p style="text -align: left;">This interface wants to be a guide to run queries and interpret them with the intuitive

Cytoscape visualizations without prior software experience. It facilitates understanding and communication of
relevant relationships between different biological Data Classes. </p>

6 <hr />
7 <p style="text -align: left;"> WHAT YOU CAN DO WITH IT:</p>
8
9 <li style="text -align: left;">Run queries using whatever template </

strong> you want from all registered InterMine instances in one place.
10 <li style="text -align: left;">Advanced users can use a flexible query&

nbsp; interface to construct their own data mining queries.
11 <li style="text -align: left;">Display and export the <

strong>results in a table.
12 <li style="text -align: left;">A set of visualization tools

are made available to the user from Cytoscape domains to enrich the interpretation of the results.
13 <li style="text -align: left;">And customization options to

personalize the Cytoscape Networks.
14 <li style="text -align: left;">Store your visualizations in

JSON format and display <span style="color:
#37D624;">saved Networks .

15
16 <hr />
17 <p style="text -align: left;">If you need any help click the ? in

each of the pages. Some hints are also visible hovering your mouse over the buttons. </p>
18 <p style="text -align: center;">InterMine Project - University of Cambridge , 2020 | c</

span>ontact: csanchla8@alumnes.ub.edu</p>

Listing B.1: Script of the intro_text.html.

B.2. Interface simplified code

B.2.1. Simplified code of the app.R script structure

1 ## app.R ##
2 #Packages ----
3 # load("Packages.R")
4 #Libraries ----
5
6 ...
7
8 #Load functions ----
9

10 ...
11
12 # UI: View ----
13 #user interface should contain what the users see
14 ui <- dashboardPage(
15
16 # title of browser tab
17 title = "Data Visualizations with RCytoscape",
18
19 dashboardHeader(
20 title = tags$img(src = "intermine.png", width = "100%"),
21 dropdownMenuOutput("dropdownmenu")
22),
23
24 dashboardSidebar(
25
26 sidebarMenu(
27
28 ...
29
30)
31),
32
33 dashboardBody(
34 # Add class fixed to header and sidebar
35 tags$script(HTML("$(’body ’).addClass(’fixed ’);")),
36
37 tabItems(# Create a tab items menu
38
39 tabItem(# Create a new tab
40 tabName = "home",
41 includeMarkdown("home.md")

23

42),
43
44 ...
45)
46)
47)
48
49 #Server: where the data is processed -----
50 server <- function(input , output , session){
51 # Close background process when user close app
52 if (!interactive()) {
53 session$onSessionEnded(function() {
54 stopApp()
55 q("no")
56 })
57 }
58
59 ...
60
61 }
62 # Call ui and server to create a new session in browser which display the app----
63 shinyApp(ui, server , options = list(launch.browser = TRUE))

Listing B.2: Simplified code of the app.R script structure.

B.2.2. Simplified code of the tab dashboard structure of:

B.2.2.1. Run your query and Saved Results tabs

1 # UI: View ----
2 #user interface should contain what the users see
3 ui <- dashboardPage(
4
5 ...
6
7 dashboardBody(
8
9 ...

10
11 tabItems(
12
13 ...
14
15 tabItem(
16 tabName = "download", #label for Saved Results tab
17 introjsUI(), #to use the package rintrojs
18 tags$h3("Saved Workflows"), #header text
19 tabPanel("Cytoscape Network Style", fluid = TRUE ,
20 fluidRow(#fluid row section
21 box(#box to hold content in the fluid row section
22 width = 12,
23 column(
24 width = 12,
25 fileInput("file", "Upload Zip file", accept = ".zip"), #file upload control
26 bsTooltip("file", "Here , you can upload saved networks and see the results of the query in a

table and the interactive Network with your last modifications."),
27 actionButton("unzip", "Unzip files", style="color: #fff; background -color: #3366ff; border -

color: #3366ff"),
28 bsTooltip("unzip", "Press this button to display the results table and the network."),
29 br(), # add a line break
30 br(),
31 textOutput("zipError") # Output error
32)
33
34),
35 conditionalPanel("input.unzip",{ #only if the unzip is correct
36 box(
37 width = 12,
38 column(
39 width = 12,
40 withLoader(DTOutput("resultstable_save", height = "100%"), loader = "loader6"),
41 br(),
42 hr(),
43 cytoscapeOutput("network_saved", height = "600px")
44)
45)
46 })
47)
48
49))
50)
51)
52)

Listing B.3: Code for the tab dashboard structure of Saved Results tab.

B.2.2.2. The other tabs

1 # UI: View ----
2 #user interface should contain what the users see
3 ui <- dashboardPage(
4
5 ...
6
7 dashboardBody(
8
9 ...

10
11 tabItems(
12
13 ...
14
15 tabItem(# add new item inside tab files
16 tabName = "templates",
17
18 introjsUI(), #include rintrojs
19
20 useShinyFeedback(), # include shinyFeedback
21
22 tags$h3("Template queries"),
23 tabPanel("Template queries", fluid = TRUE ,
24
25 sidebarLayout(
26 sidebarPanel(#display with distinc background color and containing input controls
27 fluidRow(

28 column(# create a column
29 width = 12, # fill width
30
31 uiOutput("template_mine"), #output text for the user saying which Mine is chosen
32 hr(),
33 uiOutput("template_choice"), #the select list to choose a template query , the values are

defined once the Mine is selected
34 br(),
35 br(),
36 br(),
37 #include actionable button to display help information
38 actionButton("help1","", icon = icon("question"), style="color: #000; background -color: #

bdff80; border -color: #bdff80")
39
40))),
41 mainPanel(#ocupies approx 2/3 of the width , usually contains outputs
42 fluidRow(
43 uiOutput("index_choice"),
44 hr(),
45 br(),
46 uiOutput("template_constraint_summary"), #control inputs to redefine constraints from the

template query
47 bsTooltip("template_constraint_summary","Summarize the information about the constraints

contained by an object of the class InterMineR.","top")
48)
49)
50)
51
52
53)
54
55),
56
57 ...
58
59)
60)
61)

Listing B.4: Code for the tab dashboard structure of Template Queries tab.

B.3. InterMineR fragments of code

B.3.1. Selecting the InterMine and getting the data model: initInter-
Mine, listMines, getModel

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5
6 ###### Choosing the Mine ######
7 im <- ""
8 #functions from the InterMineR package are called
9 im <- reactive({

10 initInterMine(mine = listMines()[input$mine_template]) #saves the mine
11 })
12 model_im <- reactive({
13 getModel(initInterMine(mine = listMines()[input$mine_template]))
14 })
15
16 ...
17
18 }

Listing B.5: Code for choosing the InterMine.

B.3.2. Get the information of the templates pre-defined in InterMine
and get the query obtained in a template: getTemplates, get-
TemplatesQuery

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5

6 ###### Choosing the Template ######
7 output$template_choice <- renderUI({
8 selectInput(
9 inputId = "t_choice",

10 label = "Choose a template query:",
11 choices = getTemplates(im())[2], #function from InterMineR package that returns a list of templates
12 selected = ""
13)
14
15 })
16
17 ...
18
19 q_reactive <- eventReactive(input$t_choice ,{
20 #getting the query contained in a template using a function from the InterMineR package
21 getTemplateQuery(im(), getTemplates(im())[1][[1]][match(input$t_choice ,getTemplates(im())[2][[1]])])
22 })
23
24 ...
25
26 }

Listing B.6: Code for choosing the template query.

B.3.3. Constraints: setConstraints

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5
6 ###### Set the Query Template ######
7 #the following return the results from the (non)costumized template query in response to the events
8 q_query_reactive <- eventReactive(c(input$t_choice ,input$m.index_t1,input$m.index_t2,input$m.index_t3,input$m.index_

t4,input$values_t1,input$values_t2,input$values_t3, input$values_t4),{ #these are the events inside a vector
9 q <- q_reactive() #getting the query contained in a template

10 ind_1 <- input$m.index_t1 #path of the constraint of the template (information by default)
11 value_1 <- input$values_t1 #argument of the constraint of the template (can be edited by the user)
12 if(!(is.null(value_1))){ #the user has edit the argument of the constraint
13 q_constraints <- setConstraints(#InterMineR package function to modify constraints
14 values = list(c(input$values_t1)),
15 modifyQueryConstraints = q, #the template
16 m.index = 1 #first constraint and so index 1
17)
18 #same operation for the other constraints
19 ind_2 <- input$m.index_t2
20 value_2 <- input$values_t2
21 if(value_2!=""){
22 q_constraints <- setConstraints(
23 values = list(value_1, value_2),
24 modifyQueryConstraints = q,
25 m.index = c(1,2)
26)
27 ind_3 <- input$m.index_t3
28 value_3 <- input$values_t3
29 if(value_3!=""){
30 q_constraints <- setConstraints(
31 values = list(value_1, value_2, value_3),
32 modifyQueryConstraints = q,
33 m.index = c(1,2,3)
34)
35 ind_4 <- input$m.index_t4
36 value_4 <- input$values_t4
37 if(value_4!=""){
38 q_constraints <- setConstraints(
39 values = list(value_1, value_2, value_3, value_4), #different constraints and so different values
40 modifyQueryConstraints = q, #the template
41 m.index = c(1,2,3,4) #the index of the paths from the template
42)
43 }
44 }
45 }
46
47 q_query <- setQuery(inheritQuery = q, where = q_constraints) #combining the query template with the new

constraints
48 }
49 else{
50 q_query <- q #or in case there are no modifications , the template itselves
51 }
52 })
53
54 ...
55
56 }

Listing B.7: Code for modifying the constraints of a Query Template.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5
6 ###### Setting the Query from the Builder Query ######
7 #Shown data
8 q_query_reactive_builder_select <- eventReactive(c(input$b_choice ,input$b_2_choice ,input$b_3_choice ,
9 input$b_4_choice ,input$b_5_choice ,input$b_select_1,

10 input$b_constraint_1,input$b_order ,input$desc_asc,
11 input$b_select_2, input$b_constraint_2,input$b_select_3,
12 input$b_constraint_3, input$b_select_4,input$b_constraint_4,
13 input$b_select_5, input$b_constraint_5,input$operator_0,
14 input$value_0, input$operator_1, input$value_1,input$operator_2,
15 input$value_2, input$operator_3, input$value_3,input$operator_4,
16 input$value_4, input$operator_5, input$value_5),{
17
18 model_mine <- model_im() #getModel representation of the data model for the mine
19 selectitems <- c() #this is going to be the first argument of setQuery
20 #type of data to be returned in the first level
21 if(!(is.null(input$b_select_1))){ #data "class" shown in the 1st level
22 try({
23 for (element in input$b_select_1){
24 element_str <- strsplit(element , " ") #creating a list of words
25 element_str <- element_str[[1]]
26 try({
27 for (variable in element_str[2:length(element_str)]) {
28 #trying to catch the words in capital letters that are not SNP
29 #future improvement: catch more exceptions such as SNP...
30 #it has been observed while building a query that some classes are not recognized due to the writting
31 if(variable==toupper(variable) & variable!="SNP"){
32 #the modification: capitalize (only the first letter) the variables in capital letters
33 element_str <- replace(element_str, element_str==variable ,capitalize(tolower(variable)))
34 }
35 }
36 },silent = TRUE)
37
38 if(element_str==toupper(element_str)){
39 element_str[1] <- tolower(element_str[1]) #the first entire word to lower
40 }else{
41 element_str[1] <- decapitalize(element_str[1]) #the first letter of the first word to lower
42 }
43 element_str <- paste(element_str, collapse = "") #paste again all the splitted words together
44 selectitems <- c(selectitems ,paste0(input$b_choice ,".",element_str)) #add path
45 }
46 })
47 }
48 #the same for the consecutive levels
49 ...
50 selectitems #returns
51 })
52
53 #Order
54 q_query_reactive_builder_order <- eventReactive(c(input$b_choice ,input$b_order ,input$desc_asc),{
55 #first split , decapitalize , paste again
56 b_order_str <- strsplit(input$b_order , " ")
57 b_order_str[[1]][1] <- decapitalize(b_order_str[[1]][1])
58 b_order_str <- paste(b_order_str[[1]], collapse = "")
59
60 order <- paste0(input$b_choice ,".",b_order_str)
61 sort <- c(as.character(input$desc_asc))
62 names(sort) <- order
63 return(list(sort)) #list , the name of the column and the type of sorting
64
65 })
66 #Constraint data
67 q_query_reactive_builder_constraints <- eventReactive(c(input$b_choice ,input$b_2_choice ,input$b_3_choice ,
68 input$b_4_choice ,input$b_5_choice ,input$b_select_1,
69 input$b_constraint_1,input$b_order ,input$desc_asc,
70 input$b_select_2, input$b_constraint_2,input$b_select_3,
71 input$b_constraint_3, input$b_select_4,input$b_constraint_4,
72 input$b_select_5, input$b_constraint_5,input$operator_0,
73 input$value_0, input$operator_1, input$value_1,input$operator_2,
74 input$value_2, input$operator_3, input$value_3,input$operator_4,
75 input$value_4, input$operator_5, input$value_5),{
76 model_mine <- model_im()
77 constraints_paths <- c() #this is going to be the first argument of setConstraints()
78 constraints_operators <- c() #this is going to be the second argument of setConstraints()
79 constraints_values <- c() #this is going to be the third argument of setConstraints()
80
81 #consider that from the first data type level there are two input controls for constraints
82 if(!(is.null(input$operator_0)) & !(is.null(input$value_0))){
83 try({
84 constraints_paths <- c(constraints_paths ,input$b_choice)
85 constraints_operators <- c(constraints_operators ,input$operator_0)
86 #if more than one value corresponds to a single constraint , they create a list
87 constraints_values <- rlist::list.append(constraints_values , str_split(input$value_0,","))
88 })
89 }
90 #treatment as with q_query_reactive_builder_select to define the paths for the query
91 if(!(is.null(input$operator_1)) & !(is.null(input$value_1))){
92 try({
93 b_select_1 <- strsplit(input$b_constraint_1, " ")
94 if(b_select_1==toupper(b_select_1)){
95 b_select_1[[1]][1] <- tolower(b_select_1[[1]][1])
96 }else{
97 b_select_1[[1]][1] <- decapitalize(b_select_1[[1]][1])
98 }

99 b_select_1_str<-paste(b_select_1[[1]], collapse = "")
100
101 constraints_paths <- c(constraints_paths ,paste0(input$b_choice ,".",b_select_1_str))
102 constraints_operators <- c(constraints_operators ,input$operator_1)
103 constraints_values <- rlist::list.append(constraints_values , str_split(input$value_1,","))
104 })
105 }
106 #the same for the consecutive constraints and levels
107
108 ...
109
110 constraints_values_list <- list() #order list
111 index<-1
112 for(i in constraints_values){
113 constraints_values_list[index]<-i
114 index<-index+1
115 }
116
117 constraint_function <- setConstraints(
118 paths = constraints_paths , #list with the path(s)
119 operators = constraints_operators , #operator(s) for each constraint
120 values = constraints_values_list #order
121)
122
123 constraint_function #return
124 })
125
126 ...
127
128 }

Listing B.8: Code for defining the type of data to be returned and the constraints of
a new query.

B.3.4. Initialize a new InterMineR query or modify an existing list
query: setQuery

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5
6 ###### Setting the Query from the Builder Query ######
7
8 ...
9

10 #setQuery
11 q_query_reactive_builder <- eventReactive(c(input$setQ , input$delete_constraints),{
12 values_select$dfSelect <- q_query_reactive_builder_select() #the data frame with type of data to be returned by

the query
13 if (!is.null(input$table_constraints_rows_selected)) { #double check of selected paths with the table (summmary)
14 #the user could had deleted some paths
15 values_select$dfSelect <- data.frame(values_select$dfSelect)
16 values_select$dfSelect <- values_select$dfSelect[-as.numeric(input$table_constraints_rows_selected),]
17 }
18 #when is dataframe the information is inside [,1]
19 if(is.data.frame(values_select$dfSelect)){
20 values_select <- values_select$dfSelect[,1]
21 }else{
22 values_select <- values_select$dfSelect
23 }
24 #using the function from intermineR package
25 q_query_reactive_builder_func <- setQuery(
26 select = values_select , #type of data to be returned
27 orderBy = q_query_reactive_builder_order(), #order of the results
28 where = q_query_reactive_builder_constraints() #constraints
29)
30 q_query_reactive_builder_func #return
31 })
32
33 ...
34
35 }

Listing B.9: Code for creating a query.

B.3.5. Get the summary of constraints: summary

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...

5
6 ###### Set the Query Template ######
7
8 ...
9

10 #the following returns a summary of the (non)modified template query in response to the events
11 observeEvent(c(input$t_choice ,input$values_t1,input$m.index_t2,
12 input$m.index_t3,input$m.index_t4,
13 input$values_t1,input$values_t2,input$values_t3,
14 input$values_t4),{
15 output$template_constraint_summary <- renderUI({
16 tagList(
17 box(
18 width = 12, # fill the width of the page
19 tags$h2("Summary"),
20 #only showing query information with constraints
21 if(is.list(q_query_reactive())){tags$p("No constraint set to template query.")}else{try(

renderDataTable({summary(q_query_reactive())}))},
22 br(),
23 div(style="display:inline -block; float:right",
24 actionButton("goResults","Go to Results",
25 style="color: #fff; background -color: #3366ff; border -color: #3366ff"))
26)
27)
28 })
29 })
30 ...
31
32 ###### Setting the Query from the Builder Query ######
33
34 ...
35
36 #Summary of the query
37 observeEvent(c(input$setQ ,input$delete_constraints),{
38 output$builder_constraint_summary <- renderUI({
39 tagList(
40 box(
41 width = 12, # fill the width of the page
42 tags$h2("Summary"),
43 if(is.list(q_query_reactive_builder())){tags$p("No constraint set to template query.")}else{
44 if(length(summary(q_query_reactive_builder())) == 1){try(tags$p(summary(q_query_reactive_builder())),

silent=TRUE
45)}else{try(datatable(summary(q_query_reactive_builder())),silent=TRUE
46)}
47 },
48 div(style="display:inline -block; float:right",
49 actionButton("goBuilder","Go to Results",
50 style="color: #fff; background -color: #3366ff; border -color: #3366ff"))
51)
52)
53 })
54 })
55
56 ...
57
58 }

Listing B.10: Code for the summary of constraints.

B.3.6. Get the results: runQuery

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3
4 ...
5
6 ###### Run Template Query ######
7 results_reactive <- eventReactive(c(input$t_choice ,input$m.index_t1,input$m.index_t2,
8 input$m.index_t3,input$m.index_t4,
9 input$values_t1,input$values_t2,input$values_t3,

10 input$values_t4,input$goResults),{ #the more advanced in the workflow the more
events

11 #reactivity is that when a parameter of the template query is changed the
results are obtained again

12 q <- q_query_reactive()
13 if(is.list(q)){
14 res <- runQuery(im(), q)
15 } else {
16 res <- runQuery(im(), q)
17 }
18 })
19 ...
20
21 ###### Setting the Query from the Builder Query ######
22
23 ...
24
25 #RunQuery
26 results_reactive_builder <- eventReactive(c(input$goBuilder , input$delete_constraints),{
27 q <- q_query_reactive_builder()
28 if(is.list(q)){
29 res <- runQuery(im(), q[[1]])

30 } else {
31 res <- runQuery(im(), q)
32 }
33 })
34
35 ...
36
37 }

Listing B.11: Code that returns results from a query.

B.4. Cytoscape fragments of code

B.4.1. Visualize tab

B.4.1.1. From data frame results to JSON graph: igraph and graphNEL

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Selection of Id and Source ######
5 ...
6 observeEvent(input$options_button ,{ #the attributes selected in this step are the parameters to play with the

network visualization
7 if(identical(modality(),NULL)){
8 updateSelectInput(session , "nodes_attributes",
9 choices = names(results_reactive()))

10 }else{
11 updateSelectInput(session , "nodes_attributes",
12 choices = names(results_reactive_builder()))
13 }
14
15 })
16 observeEvent(input$options_button ,{
17 if(identical(modality(),NULL)){
18 updateSelectInput(session , "id_edges",
19 choices = names(results_reactive()))
20 }else{
21 updateSelectInput(session , "id_edges",
22 choices = names(results_reactive_builder()))
23 }
24
25 })
26 observeEvent(input$options_button ,{
27 if(identical(modality(),NULL)){
28 updateSelectInput(session , "edges_attributes",
29 choices = names(results_reactive()))
30 }else{
31 updateSelectInput(session , "edges_attributes",
32 choices = names(results_reactive_builder()))
33 }
34
35 })
36
37 ###### Dataframe of Results converted to graphNEL class ######
38 interaction_reactive_func <- function(dataframe){
39 df <- as.data.frame(dataframe) #results_reactive() or results_reactive_builder()
40
41 nodes <- data.frame(id = unique(c(df[,input$id_nodes], df[,input$id_edges])),
42 stringsAsFactors = FALSE)
43
44 edges <- df %>%
45 dplyr::select(source = input$id_nodes ,
46 target = input$id_edges) %>%
47 dplyr::mutate(interaction = paste(source , ’_’, target))
48
49 i_graph <- graph_from_data_frame(edges , directed = TRUE , nodes) #conversion to igraph
50
51 for(element in input$edges_attributes){
52 edge_attr(i_graph , element) <- df[,element]
53 }
54 for(element in input$nodes_attributes){
55 df <- df[!duplicated(df[,input$id_nodes]),] #duplicated id nodes are eliminated
56 vertex_attr(i_graph , element) <- df[,element]
57 }
58
59 g <- igraph.to.graphNEL(i_graph) #conversion to graphNEL class
60
61 }
62 interaction_reactive <- eventReactive(c(input$t_choice ,input$m.index_t1,input$m.index_t2,
63 input$m.index_t3,input$m.index_t4,
64 input$values_t1,input$values_t2,input$values_t3,
65 input$values_t4,input$goResults ,input$goInteraction , input$id_nodes ,
66 input$id_edges ,input$nodes_attributes ,input$edges_attributes),{
67
68 interaction_reactive_func(results_reactive())
69 })

70 interaction_reactive_builder <- eventReactive(c(input$goInteraction ,input$id_nodes ,input$id_edges ,
71 input$nodes_attributes ,input$edges_attributes),{
72
73 interaction_reactive_func(results_reactive_builder())
74 })
75 ...
76 }

Listing B.12: Code that converts results to a graphNEL class.

B.4.1.2. cyjShiny and options

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Options of the Visualize your results tab ######
5 observeEvent(input$goInteraction ,{
6 if(identical(modality(),NULL)){
7 updateSelectInput(session , "selectName", #Select Node by ID
8 choices = c("",nodes(interaction_reactive()))) #retrieves the nodes ID of the graphNEL
9 }else{

10 updateSelectInput(session , "selectName",
11 choices = c("",nodes(interaction_reactive_builder())))
12 }
13 })
14
15 nodes_attr_reactive <- reactive({ #to read as a reactive variable
16 input$nodes_attributes
17 })
18 observeEvent(input$goInteraction , {
19 if(identical(modality(),NULL)){
20 updateSelectInput(session , "selectName_2", #select node by attribute
21 choices = c("",nodes_attr_reactive()))
22 }else{
23 updateSelectInput(session , "selectName_2",
24 choices = c("",nodes_attr_reactive()))
25 }
26
27 })
28
29 observeEvent(input$selectName_2, ignoreInit = TRUE , { #once the attribute is set, choose the value
30 if(identical(modality(),NULL)){
31 df <- results_reactive()
32 updateSelectInput(session , "selectName_2_attr",
33 choices = c("",df[,input$selectName_2]))
34 }else{
35 df <- results_reactive_builder()
36 updateSelectInput(session , "selectName_2_attr",
37 choices = c("",df[,input$selectName_2]))
38 }
39 })
40 ...
41 }

Listing B.13: Code that establishes the susceptible data to be filtered.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Options of the Visualize your results tab ######
5 ...
6
7 observeEvent(input$selectName , ignoreInit=TRUE ,{
8 printf("about to sendCustomMessage , selectNodes")
9 session$sendCustomMessage(type="selectNodes", message=list(input$selectName))

10 #using selectNodes function from cyjShiny in the form of a custom message to the web page
11 #to select nodes by ID in the network
12 })
13
14 observeEvent(input$selectName_2_attr , ignoreInit=FALSE ,{
15 if(identical(modality(),NULL)){
16 printf("about to sendCustomMessage , selectNodes")
17 df <- results_reactive()
18
19 node_i <- df[,input$selectName_2]==input$selectName_2_attr #the nodes that have the attribute
20 node <- df[node_i,input$id_nodes] #the node ID is got
21
22 for (element in node){ #iterate because the function selectNodes only accepts one node
23 session$sendCustomMessage(type="selectNodes", message=list(element))
24 #selecting nodes by attribute value
25 }
26 }else{
27 printf("about to sendCustomMessage , selectNodes")
28 df <- results_reactive_builder()
29
30 node_i <- df[,input$selectName_2]==input$selectName_2_attr
31 node <- df[node_i,input$id_nodes]
32
33 for (element in node){
34 session$sendCustomMessage(type="selectNodes", message=list(element))
35 }

36 }
37 })
38
39 observeEvent(input$sfn, ignoreInit=TRUE ,{
40 printf("about to sendCustomMessage , sfn")
41 #select the first neighbors
42 session$sendCustomMessage(type="sfn", message=list())
43 })
44
45 observeEvent(input$fit, ignoreInit=TRUE , {
46 fit(session , 80) #pixels
47 })
48
49 observeEvent(input$fitSelected , ignoreInit=TRUE ,{
50 printf("about to call R function fitSelected")
51 #the current selected nodes fill the display
52 fitSelected(session , 100)
53 })
54
55 observeEvent(input$getSelectedNodes , ignoreInit=TRUE , {
56 output$selectedNodesDisplay <- renderText({" "})
57 getSelectedNodes(session)
58 #print the ID’s of the node selection
59 })
60
61 observeEvent(input$selectedNodes , {
62
63 # communicated here via assignement in cyjShiny.js
64 # Shiny.setInputValue("selectedNodes", value , {priority: "event"});
65 newNodes <- input$selectedNodes;
66 output$selectedNodesDisplay <- renderText({
67 paste(newNodes)
68 })
69 })
70
71 observeEvent(input$clearSelection , ignoreInit=TRUE , {
72 printf("about to sendCustomMessage , clearSelection")
73 session$sendCustomMessage(type="clearSelection", message=list())
74 })
75
76 observeEvent(input$doLayout , ignoreInit=TRUE ,{
77 strategy <- input$doLayout
78 printf("about to sendCustomMessage , doLayout: %s", strategy) #layout using the specified strategy
79 #the strategies that are able: cola , cose , circle , concentric , grid , breadthfirst , random , dagre , cose -bilkent
80 doLayout(session , strategy)
81 })
82
83 observeEvent(input$hideSelection , ignoreInit = TRUE , {
84 #all selected nodes and their edges are hidden
85 hideSelection(session)
86 })
87
88 ...
89
90 observeEvent(input$invertSelection , ignoreInit = TRUE , {
91 #selected nodes and edges are hidden
92 invertSelection(session)
93 })
94
95 observeEvent(input$showAll , ignoreInit = TRUE , {
96 #all unselected and shown
97 showAll(session)
98 })
99

100 ...
101 }

Listing B.14: Code for cyjShiny functions.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Options of the Visualize your results tab ######
5 ...
6 #as it is desired that the hidden nodes in the visualize your results tab kept hidden in the next step
7 #reactive expressions are defined
8 hiddennodes <- reactiveVal() #for invert selected and remove selected buttons
9 hiddennodes_builder <- reactiveVal()

10
11 observeEvent(c(input$clearSelection , input$showAll),{
12 if(identical(modality(),NULL)){
13 #after a selection , the user can decide to unselect everything and so the hiddennodes reactive value is set to

null
14 hiddennodes(NULL)
15 }else{
16 hiddennodes_builder(NULL)
17 }
18 })
19
20 #to keep the deletes in the next tab
21 observeEvent(input$hideSelection , ignoreInit=TRUE , {
22 getSelectedNodes(session) #when Remove Selected is pressed
23 })
24
25 observeEvent(input$selectedNodes , {
26 if(input$hideSelection != 0){ #if Remove Selected has been pressed
27 newNodes_hide <- input$selectedNodes;

28 if(identical(modality(),NULL)){ #templates
29 if(is.null(hiddennodes())){ #considering non previous deletes
30 df <- results_reactive() #the data frame of the graph
31 for (node in newNodes_hide){
32 if (node %in% df[,input$id_nodes]){ #nodes or edges separation
33 df <- df[!df[,input$id_nodes]==node ,] #keep those nodes non selected
34 } else if (node %in% df[,input$id_edges]) { #here edges
35 df <- df[!df[,input$id_edges]==node ,]
36 }
37 }
38 } else { #considering previous deletes
39 df <- as.data.frame(hiddennodes())
40 for (node in newNodes_hide){
41 if (node %in% df[,input$id_nodes]){ #nodes or edges names separation
42 df <- df[!df[,input$id_nodes]==node ,]
43 } else if (node %in% df[,input$id_edges]) {
44 df <- df[!df[,input$id_edges]==node ,]
45 }
46 }
47 }
48 } else { #query builder
49 if(is.null(hiddennodes_builder())){
50 df <- results_reactive_builder()
51 for (node in newNodes_hide){
52 if (node %in% df[,input$id_nodes]){ #nodes or edges names separation
53 df <- df[!df[,input$id_nodes]==node ,]
54 } else if (node %in% df[,input$id_edges]) {
55 df <- df[!df[,input$id_edges]==node ,]
56 }
57 }
58 } else {
59 df <- as.data.frame(hiddennodes_builder())
60 for (node in newNodes_hide){
61 if (node %in% df[,input$id_nodes]){ #nodes or edges names separation
62 df <- df[!df[,input$id_nodes]==node ,]
63 } else if (node %in% df[,input$id_edges]) {
64 df <- df[!df[,input$id_edges]==node ,]
65 }
66 }
67 }
68 }
69 if (identical(modality(), NULL)){
70 hiddennodes(df) #defining and saving the new data frame in a reactive value
71 } else {
72 hiddennodes_builder(df)
73 }
74 updateActionButton(session , "hideSelection", "Remove Selected") #update the action button
75 } else {
76 return()
77 }
78 })
79
80 #for the template query pathway
81 new_df <- eventReactive(c(input$hideSelection , input$clearSelection , input$showAll , input$goOverlaid1),{
82 if (is.null(hiddennodes())){ #the user has not filtered the nodes
83 df <- results_reactive()
84 } else { #the user has done some filtering pressing hide selection action button
85 df <- as.data.frame(hiddennodes())
86 }
87 df
88 })
89
90 #the same but for the built query pathway
91 new_df_builder <- eventReactive(c(input$hideSelection , input$clearSelection , input$showAll , input$goOverlaid1),{
92 if (is.null(hiddennodes_builder())){
93 df <- results_reactive_builder()
94 } else {
95 df <- as.data.frame(hiddennodes_builder())
96 }
97 df
98 })
99

100 ...
101 }

Listing B.15: Code to keep deletes in the Overlay tab.

B.4.1.3. Wrapping cytoscape.js and downloading the network in png format.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Wrapping cytoscape.js html widget in Visualize your results tab ######
5 output$cyjShiny <- renderCyjShiny({
6 if(identical(modality(),NULL)){
7 g3 <- interaction_reactive()
8 graph <- graphToJSON(g3)
9 cyjShiny(graph , layoutName="cola", height = 600) #by default the cola layout is set

10 #but doLayout() function is used to select other layouts
11 }else{
12 g3 <- interaction_reactive_builder()
13 graph <- graphToJSON(g3)
14 cyjShiny(graph , layoutName="cola", height = 600)

15 }
16 })
17 #the html widget can be downloaded in png format
18 observeEvent(input$downloadviewer , ignoreInit=TRUE , {
19 file.name <- tempfile(fileext=".png") #.png
20 savePNGtoFile(session , file.name)
21 })
22 observeEvent(input$pngData , ignoreInit=TRUE , {
23 printf("received pngData")
24 png.parsed <- fromJSON(input$pngData)
25 substr(png.parsed , 1, 30) # [1] "data:image/png;base64 ,iVBORw0K"
26 nchar(png.parsed) # [1] 768714
27 png.parsed.headless <- substr(png.parsed , 23, nchar(png.parsed)) # chop off the uri header
28 png.parsed.binary <- base64decode(png.parsed.headless)
29 if(nchar(input$filenameViewer)<1){
30 printf(paste0("writing png to ","network",format(Sys.time(), "%m%d_%H%M"),".png"))
31 conn <- file(paste0("network",format(Sys.time(), "%m%d_%H%M"),".png"), "wb")
32 }else{
33 printf(paste0("writing png to ",input$filenameViewer ,".png"))
34 conn <- file(paste0(input$filenameViewer ,".png"), "wb")
35 }
36 writeBin(png.parsed.binary , conn)
37 close(conn)
38 })
39 #info message of the download
40 observeEvent(input$downloadviewer , {
41 shinyalert(
42 title = "The download is complete.",
43 text = paste("You can find the file in ",getwd()," directory."),
44 type = "info",
45 closeOnEsc = FALSE ,
46 closeOnClickOutside = FALSE ,
47 html = FALSE ,
48 showCancelButton = FALSE ,
49 showConfirmButton = TRUE ,
50 inputType = "text",
51 inputValue = "",
52 inputPlaceholder = "",
53 confirmButtonText = "OK",
54 confirmButtonCol = "#AEDEF4",
55 cancelButtonText = "Cancel",
56 timer = 0,
57 animation = TRUE ,
58 imageUrl = NULL ,
59 imageWidth = 100,
60 imageHeight = 100,
61 className = "", #modality reactive value is set to true
62 callbackJS = NULL ,
63 inputId = "shinyalert"
64)
65 })
66 ...
67 }

Listing B.16: Code that displays the network and saves it as an image.

B.4.2. Overlay tab

B.4.2.1. From data frame results to edges and nodes dataframes

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Preparing nodes and edges dataframes for Overlay tab ######
5 #the following function returns edges dataframe
6 style_edges_reactive_func <- function(data_frame , id_nodes , id_edges){
7 df <- data_frame
8 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges])), stringsAsFactors = FALSE) #only non-repited
9 edges <- df %>%

10 dplyr::select(source = all_of(id_nodes),
11 target = all_of(id_edges)) %>%
12 dplyr::mutate(interaction = paste(source , ’_’, target))
13 }
14
15 style_edges_reactive <- eventReactive(c(input$t_choice ,input$m.index_t1,input$m.index_t2, input$m.index_t3,
16 input$m.index_t4, input$values_t1, input$values_t2, input$values_t3,
17 input$values_t4, input$goResults ,input$goOverlaid1 , input$hideSelection ,
18 input$clearSelection , input$invertSelection , input$showAll ,
19 input$goInteraction , input$id_nodes ,input$id_edges ,input$nodes_attributes ,
20 input$edges_attributes),{
21
22 #applying the previous function in the template query
23 style_edges_reactive_func(new_df(),input$id_nodes , input$id_edges)
24
25 })
26 style_edges_reactive_builder <- eventReactive(c(input$b_choice ,input$b_2_choice ,input$b_3_choice ,
27 input$b_4_choice ,input$b_5_choice ,
28 input$b_select_1,input$b_constraint_1,input$b_order ,
29 input$desc_asc, input$b_select_2, input$b_constraint_2,
30 input$b_select_3, input$b_constraint_3, input$b_select_4,

31 input$b_constraint_4, input$b_select_5, input$b_constraint_5,
32 input$operator_0, input$value_0, input$operator_1, input$value_1,
33 input$operator_2, input$value_2, input$operator_3, input$value_3,
34 input$operator_4, input$value_4, input$operator_5, input$value_5,
35 input$goOverlaid1 ,input$hideSelection , input$clearSelection ,
36 input$invertSelection , input$showAll , input$goBuilder ,
37 input$goInteraction , input$id_nodes ,input$id_edges ,
38 input$nodes_attributes , input$edges_attributes),{
39
40 style_edges_reactive_func(new_df_builder(),input$id_nodes ,input$id

_edges)
41
42 })
43 ...
44 }

Listing B.17: Code that establishes the susceptible data to be filtered.

B.4.2.2. Options for the overlays and mapping.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Options of the Overlay additional data tab ######
5 observeEvent(input$goOverlaid1 ,{
6 output$ui <- renderUI({
7 if (is.null(input$mapping_question))
8 return()
9

10 # Depending on input$mapping_question , we’ll generate a different
11 # UI component and send it to the client.
12 switch(input$mapping_question ,
13 "Yes, a colour gradient." = {
14 box(width = 12,
15 colorSelectorInput("range_color1", "Choose the first colour:",
16 choices = c("yellow",
17 "orange",
18 "red",
19 "magenta",
20 "blue",
21 "cyan",
22 "green")),
23 bsTooltip("range_color1", "This colour is the minimum."),
24 colorSelectorInput("range_color2", "Choose the second colour:",
25 choices = rev(c("yellow",
26 "orange",
27 "red",
28 "magenta",
29 "blue",
30 "cyan",
31 "green"))),
32 bsTooltip("range_color2", "This colour is the maximum."),
33 sliderInput("range_color_numeric", "Specify the range of values to map:",min = 1, max = 1000,
34 value = c(200,500)),
35 bsTooltip("range_color_numeric", "Between the minimum and maximum value of the attribute.")
36)},
37 "Yes, a size gradient." = {
38 box(width = 12,
39 sliderInput("range_size", "Choose the extremes of the gradient:",
40 min = 10, max = 200, value = c(10,200), step = 5, round = TRUE),
41 bsTooltip("range_size", "These are the minimum and maximum sizes for the visual style."),
42 sliderInput("range_size_numeric", "Specify the range of values to map:",min = 1, max = 1000,
43 value = c(200,500)),
44 bsTooltip("range_size_numeric", "Between the minimum and maximum value of the attribute.")
45)},
46 "No" = {return()}
47)
48 })
49 })
50 observeEvent(c(input$mapping_question , input$gradient_id), {
51 if(nchar(input$gradient_id)>2){ #if the answer to mapping question is yes (because no has two characters)
52 updateSelectInput(session , "attr_color_grad",
53 choices = c(nodes_attr_reactive()))
54 updateSelectInput(session , "attr_size_grad", #select node by attribute
55 choices = c(nodes_attr_reactive()))
56 }
57 })
58 observeEvent(c(input$mapping_question , input$gradient_id), {
59 if(nchar(input$gradient_id)>2){
60 if(identical(modality(),NULL)){
61 df <- new_df()
62 ids = unique(c(df[,input$id_nodes], df[,input$id_edges]))
63 data <- data.frame(id = character(), # Create empty data frame
64 gradient_id = numeric(),
65 stringsAsFactors = FALSE)
66 n=1
67 for(i in ids){
68 list <- df[df[, input$id_nodes] == i,]
69 ii <- list[[input$gradient_id]]
70 data[n,]<-list(i,as.numeric(ii[1]))
71 n <- n+1
72 }
73 }else{

74 df <- as.data.frame(results_reactive_builder())
75 ids = unique(c(df[,input$id_nodes], df[,input$id_edges]))
76 data <- data.frame(id = character(), # Create empty data frame
77 gradient_id = numeric(),
78 stringsAsFactors = FALSE)
79 n=1
80 for(i in ids){
81 list <- df[df[, input$id_nodes] == i,]
82 ii <- list[[input$gradient_id]]
83 data[n,]<-list(i,as.numeric(ii[1]))
84 n <- n+1
85 }
86 }
87 #define a new scale considering the values of the data type
88 updateSliderInput(session ,"range_color_numeric",
89 min = min(data[,2],na.rm = TRUE), max = max(data[,2], na.rm = TRUE),
90 value = c(min(data[,2],na.rm = TRUE),max(data[,2], na.rm = TRUE))
91)
92 updateSliderInput(session ,"range_size_numeric",
93 min = min(data[,2], na.rm = TRUE), max = max(data[,2], na.rm = TRUE),
94 value = c(min(data[,2],na.rm = TRUE),max(data[,2], na.rm = TRUE))
95)
96 }
97 })
98
99 observeEvent(input$goOverlaid1 , {

100 if(identical(modality(),NULL)){
101 updateSelectInput(session , "selectName_3", #select node by attribute
102 choices = c("",c(nodes_attr_reactive())))
103 }else{
104 updateSelectInput(session , "selectName_3",
105 choices = c("",c(nodes_attr_reactive())))
106 }
107
108 })
109
110 observeEvent(input$selectName_3, ignoreInit = TRUE , {
111 if(identical(modality(),NULL)){
112 df <- new_df()
113 updateSelectInput(session , "selectName_3_attr", #select the attribute value
114 choices = c("",df[,input$selectName_3]))
115 }else{
116 df <- new_df_builder()
117 updateSelectInput(session , "selectName_3_attr",
118 choices = c("",df[,input$selectName_3]))
119 }
120 })
121 ...
122
123
124 ###### Overlaying options ######
125 observeEvent(c(input$hideSelection , input$clearSelection , input$showAll , input$goOverlaid1),{
126 if(identical(modality(),NULL)){
127 if(is.null(new_df())){
128 return()
129 } else {
130 df <- new_df()
131 options <- unique(c(df[,input$id_nodes], df[,input$id_edges]))
132 #select nodes by ID
133 updateSelectInput(session , "selectid",
134 choices = c("",options))
135 updateSelectInput(session ,"gradient_id",
136 choices = c("",c(nodes_attr_reactive())))
137 }
138 }else{
139 if(is.null(new_df_builder())){
140 return()
141 } else {
142 df <- new_df_builder()
143 options <- unique(c(df[,input$id_nodes], df[,input$id_edges]))
144 #select nodes by ID
145 updateSelectInput(session , "selectid",
146 choices = c("",options))
147 updateSelectInput(session ,"gradient_id",
148 choices = c("",c(nodes_attr_reactive())))
149 }
150 }
151
152 })
153
154 observeEvent(input$select_parameter ,{
155 #options of the parameters that can be edited
156 if(input$select_parameter=="shape"){
157 options <- c("ellipse",
158 "triangle",
159 "round -triangle",
160 "rectangle",
161 "round -rectangle",
162 "bottom -round -rectangle",
163 "cut-rectangle",
164 "barrel",
165 "rhomboid",
166 "diamond",
167 "round -diamond",
168 "pentagon",
169 "round -pentagon",
170 "hexagon",
171 "round -hexagon",
172 "concave -hexagon",

173 "heptagon",
174 "round -heptagon",
175 "octagon",
176 "round -octagon",
177 "star",
178 "tag",
179 "round -tag",
180 "vee")
181 }else if(input$select_parameter=="size"){
182 options <- c("10","20","50","70","90","100","150") #size in pixels (unit)
183 }else{
184 options <- c("Orange"="#ff8c1a", #the option visible for the user to select is the name and the code is the

argument
185 "Blue"="#99ccff",
186 "Dark Blue"="#0000cc",
187 "Forest Green"="#009900",
188 "Green"="#66ff66",
189 "Red"="#ff3300",
190 "Yellow"="#ffff4d",
191 "Purple"="#cc66ff",
192 "Pink"="#ff99cc",
193 "Grey"="#a6a6a6")
194
195 }
196 updateSelectInput(session , "select_parameter_option",
197 choices = c("", options))
198 })
199 ...
200 }

Listing B.18: Code that establishes the options.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Styling nodes ######
5 #function that modifies the nodes dataframe with the overlays
6 style_nodes_reactive <- function(data_frame ,data_frame_working , id_nodes , id_edges){
7 df <- data_frame #original
8 custom_df <- data_frame_working #overlays
9 custom_df <- unique(custom_df[!is.null(custom_df[,"Parameter"]) ,])

10 if(is.null(custom_df)){
11 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges]))) %>%
12 dplyr::mutate(node_color = "#595959") %>% #background color by default
13 dplyr::mutate(node_width = "10") %>% #size by defaults
14 dplyr::mutate(node_height = "10") %>%
15 dplyr::mutate(node_shape = "ellipse") #shape by default
16 }else{
17 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges]))) %>%
18 dplyr::mutate(node_color = "#595959") %>% #background color by default
19 dplyr::mutate(node_width = "10") %>% #size by defaults
20 dplyr::mutate(node_height = "10") %>%
21 dplyr::mutate(node_shape = "ellipse") #shape by default
22
23 custom_background <- subset(custom_df,Parameter == "background -color", select = c("Nodes","Selection")) #

dataframe subset with only background -color
24 custom_shape <- subset(custom_df,Parameter == "shape", select = c("Nodes","Selection")) #dataframe subset with

only shape
25 custom_size <- subset(custom_df, Parameter == "size", select = c("Nodes","Selection")) #dataframe subset with

only size
26
27 for (i in nodes$id) {
28 if (i %in% c(custom_background$Nodes)){
29 nodes$node_color[nodes$id == i] <- custom_background$Selection[custom_background$Nodes == i]
30 }
31 if (i %in% c(custom_size$Nodes)){
32 nodes$node_width[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
33 nodes$node_heigth[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
34 }
35 if (i %in% c(custom_shape$Nodes)){
36 nodes$node_shape[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
37 }
38 }
39 nodes
40 }
41 }
42 style_nodes_reactive_mapping <- function(data_frame ,data_frame_working , id_nodes , id_edges , attr_size_grad , attr_

color_grad){
43 if(input$mapping_question == "No"| nchar(input$gradient_id)<2){
44 df <- data_frame #original
45 custom_df <- data_frame_working #overlays
46 custom_df <- unique(custom_df[!is.null(custom_df[,"Parameter"]) ,])
47 if(is.null(custom_df)){
48 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges]))) %>%
49 dplyr::mutate(node_color = "#595959") %>% #background color by default
50 dplyr::mutate(node_width = "10") %>% #size by defaults
51 dplyr::mutate(node_height = "10") %>%
52 dplyr::mutate(node_shape = "ellipse") #shape by default
53 }else{
54 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges]))) %>%
55 dplyr::mutate(node_color = "#595959") %>% #background color by default
56 dplyr::mutate(node_width = "10") %>% #size by defaults
57 dplyr::mutate(node_height = "10") %>%
58 dplyr::mutate(node_shape = "ellipse") #shape by default
59
60 custom_background <- subset(custom_df,Parameter == "background -color", select = c("Nodes","Selection")) #

dataframe subset with only background -color

61 custom_shape <- subset(custom_df,Parameter == "shape", select = c("Nodes","Selection")) #dataframe subset with
only shape

62 custom_size <- subset(custom_df, Parameter == "size", select = c("Nodes","Selection")) #dataframe subset with
only size

63
64 for (i in nodes$id) {
65 if (i %in% c(custom_background$Nodes)){
66 nodes$node_color[nodes$id == i] <- custom_background$Selection[custom_background$Nodes == i]
67 }
68 if (i %in% c(custom_size$Nodes)){
69 nodes$node_width[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
70 nodes$node_heigth[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
71 }
72 if (i %in% c(custom_shape$Nodes)){
73 nodes$node_shape[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
74 }
75 }
76 nodes
77 }
78 }else{
79 df <- data_frame
80 if(input$mapping_question == "Yes, a colour gradient."){
81 ids = unique(c(df[,id_nodes], df[,id_edges]))
82 data <- data.frame(id = character(), # Create empty data frame
83 gradient_id = numeric(),
84 stringsAsFactors = FALSE)
85 n=1
86 for(i in ids){
87 list <- df[df[, id_nodes] == i,]
88 ii <- list[[attr_color_grad]]
89 data[n,]<-list(i,as.numeric(ii[1]))
90 n <- n+1
91 }
92 }else{
93 ids = unique(c(df[,id_nodes], df[,id_edges]))
94 data <- data.frame(id = character(), # Create empty data frame
95 gradient_id = numeric(),
96 stringsAsFactors = FALSE)
97 n=1
98 for(i in ids){
99 list <- df[df[, id_nodes] == i,]

100 ii <- list[[attr_size_grad]]
101 data[n,]<-list(i,as.numeric(ii[1]))
102 n <- n+1
103 }
104 }
105 custom_df <- data_frame_working #overlays
106 custom_df <- unique(custom_df[!is.null(custom_df[,"Parameter"]) ,])
107 if(is.null(custom_df)){
108 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges])), gradient = data[,2]) %>%
109 dplyr::mutate(node_color = "#595959") %>% #background color by default
110 dplyr::mutate(node_width = "10") %>% #size by defaults
111 dplyr::mutate(node_height = "10") %>%
112 dplyr::mutate(node_shape = "ellipse") #shape by default
113 }else{
114 nodes <- data.frame(id = unique(c(df[,id_nodes], df[,id_edges])), gradient = data[,2]) %>%
115 dplyr::mutate(node_color = "#595959") %>% #background color by default
116 dplyr::mutate(node_width = "10") %>% #size by defaults
117 dplyr::mutate(node_height = "10") %>%
118 dplyr::mutate(node_shape = "ellipse") #shape by default
119
120 custom_background <- subset(custom_df,Parameter == "background -color", select = c("Nodes","Selection")) #

dataframe subset with only background -color
121 custom_shape <- subset(custom_df,Parameter == "shape", select = c("Nodes","Selection")) #dataframe subset with

only shape
122 custom_size <- subset(custom_df, Parameter == "size", select = c("Nodes","Selection")) #dataframe subset with

only size
123
124 for (i in nodes$id) {
125 if (i %in% c(custom_background$Nodes)){
126 nodes$node_color[nodes$id == i] <- custom_background$Selection[custom_background$Nodes == i]
127 }
128 if (i %in% c(custom_size$Nodes)){
129 nodes$node_width[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
130 nodes$node_heigth[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
131 }
132 if (i %in% c(custom_shape$Nodes)){
133 nodes$node_shape[nodes$id == i] <- custom_shape$Selection[custom_shape$Nodes == i]
134 }
135 }
136 nodes
137 }
138 }
139 }
140
141 style_custom_nodes_reactive_gradient <- eventReactive(c(...),{
142 style_nodes_reactive_mapping(new_df(),values$dfWorking , input$id_nodes , input$id_edges , input$gradient_id,

input$gradient_id)
143 })
144
145 style_custom_nodes_reactive_builder <- eventReactive(c(...),{
146 style_nodes_reactive_mapping(new_df_builder(), values_builder$dfWorking_builder , input$id_nodes , input$id_

edges , input$gradient_id, input$gradient_id)
147 })
148 ...
149 }

Listing B.19: Code that modifies the nodes data frame with the overlays.

B.4.2.3. Cytoscape and node_style

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Cytoscape network chart ######
5 observeEvent(c(input$hideSelection , input$clearSelection , input$showAll , input$goOverlaid1),{
6 if(identical(modality(),NULL)){
7 #cytoscape network chart
8 #nodes and edges data frames are the arguments of the function
9 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%

10 cytoscape::layout(’breadthfirst’, directed = TRUE) %>% #by default , once initialized
11 panzoom()
12 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
13 output$network <- renderCytoscape({
14 # draw the network
15 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
16 cytoscape::layout(’breadthfirst’, directed = TRUE) %>%
17 panzoom()
18
19 })
20
21 }else{
22 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_builder(), edges = style_edges_reactive_builder())

%>%
23 cytoscape::layout(’breadthfirst’, directed = TRUE) %>%
24 panzoom()
25 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
26 output$network <- renderCytoscape({
27 # draw the network
28 cytoscape(nodes = style_custom_nodes_reactive_builder(), edges = style_edges_reactive_builder()) %>%
29 cytoscape::layout(’breadthfirst’, directed = TRUE) %>%
30 panzoom()
31
32 })
33 }
34 })
35 ...
36 }

Listing B.20: Code for the Cytoscape Network when the user first visualize the
Overlay tab.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 #for templates
5 rv <- NULL
6 values <- reactiveValues(dfWorking = rv) #a dataframe where the edited parameters are saved in rows , initialized

here
7 #same for builder
8 rv_builder <- NULL
9 rv_select <- NULL

10 values_builder <- reactiveValues(dfWorking_builder = rv_builder)
11 values_select <- reactiveValues(dfSelect = rv_select)
12 ...
13 ###### Applying the overlays ######
14 observeEvent(c(input$button_set,input$layoutcytoscape , input$downloadstyle),{
15 if(identical(modality(),NULL)){
16 df <- new_df()
17 node<-NULL
18 node_i<-NULL
19 try(node_i<-df[,input$selectName_3]==input$selectName_3_attr , silent = TRUE)
20 try(node<-df[node_i,input$id_nodes], silent = TRUE) #getting the ID
21 #First the dfWorking data frame is written with the user options
22 if(is.null(input$selectid)){ #the user has not decided to edit edit nodes by ID
23 if(is.null(input$selectName_3_attr)){ #if the user has not decided to edit any parameter
24 strategy <- input$layoutcytoscape #the user only has changed the layout strategy
25 }else{ #the user has decided to edit nodes by attribute
26 for (element in data.frame(rbind(node ,input$selectName_3_attr))){
27 #the dfworking dataframe is constructed defining 4 columns: Nodes , Attribute , Parameter , Selection
28 df_2 <- data.frame("Nodes"=element[1], "Attribute"=paste0(input$selectName_3," = ", element[2]), "

Parameter"=input$select_parameter ,"Selection"=input$select_parameter_option)
29 values$dfWorking <- rbind(values$dfWorking , df_2)
30 df_2 <- NULL
31 }
32 #the following piece of code resets the attributes
33 isolate({
34 updateSelectInput(session , "selectName_3",
35 choices = c("",c(nodes_attr_reactive())))
36
37 })
38 }
39 }else{ #the user has decided to edit nodes by ID
40 for (element in input$selectid){
41 df_2 <- data.frame("Nodes"=element ,"Attribute"="ID", "Parameter"=input$select_parameter ,"Selection"=input$

select_parameter_option)
42 values$dfWorking <- rbind(values$dfWorking , df_2)
43 df_2 <- NULL
44 }
45 }
46 #the following piece of code resets the IDs and so the user can create a new overlay
47 isolate({ #to read reactive values without establishing a relationship with the caller (non re-execution)
48 options <- unique(c(df[,input$id_nodes], df[,input$id_edges]))
49 updateSelectInput(session , "selectid",

50 choices = c("",options))
51 })
52 #the following piece of code resets the editable parameters
53 isolate({
54 updateSelectInput(session ,"select_parameter",
55 choices = c("", "Background colour"="background -color",
56 "Shape"="shape",
57 "Size"="size"
58))
59 })
60 #the following piece of code resets the attributes
61 isolate({
62 updateSelectInput(session , "selectName_3",
63 choices = c("",c(nodes_attr_reactive())))
64
65 })
66 #code to call cytoscape function and update the network
67 if(is.null(values$dfWorking)){ #if there are no overlays
68 if(input$mapping_question == "No" | nchar(input$gradient_id)<2){
69 strategy <- input$layoutcytoscape
70 printf("about to sendCustomMessage , layout: %s", strategy) #only a new layout is defined by the user
71 if(strategy=="cola"){
72 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
73 cola_layout(avoidOverlap = TRUE) %>% #special function when the layout is "cola"
74 panzoom()
75 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
76 output$network <- renderCytoscape({
77 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
78 cola_layout(avoidOverlap = TRUE) %>%
79 panzoom()
80 })
81 }else{
82 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
83 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
84 panzoom()
85 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
86 output$network <- renderCytoscape({
87 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
88 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
89 panzoom()
90 })
91 }
92 }else{
93 if(input$mapping_question == "Yes, a colour gradient."){ #the user wants to apply a colour gradient
94 if(strategy == "cola"){
95 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
96 #the first argument , previous = sign , of node_style is a recognised cytoscape node style name
97 #the second argument is the label given in the dataframe
98 node_style(’background -color’ = paste0(’mapData(gradient ,’,
99 as.character(input$range_color_numeric[1]),’, ’,

100 as.character(input$range_color_numeric[2]),’, ’,
101 input$range_color1 ,’, ’,
102 input$range_color2 ,’)’)) %>%
103
104 cola_layout(avoidOverlap = TRUE) %>%
105 panzoom()
106 }else{
107 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
108 node_style(’background -color’ = paste0(’mapData(gradient ,’,
109 as.character(input$range_color_numeric[1]),’,’,
110 as.character(input$range_color_numeric[2]),’,’,
111 input$range_color1 ,’,’,
112 input$range_color2 ,’)’)) %>%
113
114 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
115 panzoom()
116 }
117 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
118 output$network <- renderCytoscape({
119 strategy <- input$layoutcytoscape
120 printf("about to sendCustomMessage , layout: %s", strategy)
121 if(strategy == "cola"){
122 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
123 node_style(’background -color’ = paste0(’mapData(gradient ,’,
124 as.character(input$range_color_numeric[1]),’,’,
125 as.character(input$range_color_numeric[2]),’,’,
126 input$range_color1 ,’,’,
127 input$range_color2 ,’)’)) %>%
128
129 cola_layout(avoidOverlap = TRUE) %>%
130 panzoom()
131 }else{
132 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
133 node_style(’background -color’ = paste0(’mapData(gradient ,’,
134 as.character(input$range_color_numeric[1]),’,’,
135 as.character(input$range_color_numeric[2]),’,’,
136 input$range_color1 ,’,’,
137 input$range_color2 ,’)’)) %>%
138
139 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
140 panzoom()
141 }
142 })
143 }else{ #the user wants to apply a size gradient
144 if(strategy == "cola"){
145 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%

146 #the first argument , previous = sign , of node_style is a recognised cytoscape node style name
147 #the second argument is the label given in the dataframe
148
149 node_style(’width’ = paste0(’mapData(gradient ,’,
150 as.character(input$range_size_numeric[1]),’,’,
151 as.character(input$range_size_numeric[2]),’,’,
152 input$range_size[1],’,’,
153 input$range_size[2],’)’)) %>%
154 node_style(’height’ = paste0(’mapData(gradient ,’,
155 as.character(input$range_size_numeric[1]),’,’,
156 as.character(input$range_size_numeric[2]),’,’,
157 input$range_size[1],’,’,
158 input$range_size[2],’)’)) %>%
159
160 cola_layout(avoidOverlap = TRUE) %>%
161 panzoom()
162 }else{
163 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
164
165 node_style(’width’ = paste0(’mapData(gradient ,’,
166 as.character(input$range_size_numeric[1]),’,’,
167 as.character(input$range_size_numeric[2]),’,’,
168 input$range_size[1],’,’,
169 input$range_size[2],’)’)) %>%
170 node_style(’height’ = paste0(’mapData(gradient ,’,
171 as.character(input$range_size_numeric[1]),’,’,
172 as.character(input$range_size_numeric[2]),’,’,
173 input$range_size[1],’,’,
174 input$range_size[2],’)’)) %>%
175
176 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
177 panzoom()
178 }
179 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
180 output$network <- renderCytoscape({
181 strategy <- input$layoutcytoscape
182 printf("about to sendCustomMessage , layout: %s", strategy)
183 if(strategy == "cola"){
184 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
185
186 node_style(’width’ = paste0(’mapData(gradient ,’,
187 as.character(input$range_size_numeric[1]),’,’,
188 as.character(input$range_size_numeric[2]),’,’,
189 input$range_size[1],’,’,
190 input$range_size[2],’)’)) %>%
191 node_style(’height’ = paste0(’mapData(gradient ,’,
192 as.character(input$range_size_numeric[1]),’,’,
193 as.character(input$range_size_numeric[2]),’,’,
194 input$range_size[1],’,’,
195 input$range_size[2],’)’)) %>%
196
197 cola_layout(avoidOverlap = TRUE) %>%
198 panzoom()
199 }else{
200 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
201
202 node_style(’width’ = paste0(’mapData(gradient ,’,
203 as.character(input$range_size_numeric[1]),’,’,
204 as.character(input$range_size_numeric[2]),’,’,
205 input$range_size[1],’,’,
206 input$range_size[2],’)’)) %>%
207 node_style(’height’ = paste0(’mapData(gradient ,’,
208 as.character(input$range_size_numeric[1]),’,’,
209 as.character(input$range_size_numeric[2]),’,’,
210 input$range_size[1],’,’,
211 input$range_size[2],’)’)) %>%
212
213 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
214 panzoom()
215 }
216 })
217 }
218 }
219 }else{ #with overlays
220 strategy <- input$layoutcytoscape
221 if(input$mapping_question == "No"| nchar(input$gradient_id)<2){
222 if(strategy == "cola"){
223 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
224 #the first argument , previous = sign , of node_style is a recognised cytoscape node style name
225 #the second argument is the label given in the dataframe
226 node_style(’background -color’ = ’data(node_color)’) %>%
227 node_style(’shape’ = ’data(node_shape)’) %>%
228 node_style(’width’ = ’data(node_width)’) %>% #size defines width and heigth
229 node_style(’height’ = ’data(node_height)’) %>%
230 cola_layout(avoidOverlap = TRUE) %>%
231 panzoom()
232 }else{
233 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
234 node_style(’background -color’ = ’data(node_color)’) %>%
235 node_style(’shape’ = ’data(node_shape)’) %>%
236 node_style(’width’ = ’data(node_width)’) %>%
237 node_style(’height’ = ’data(node_height)’) %>%
238 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
239 panzoom()
240 }
241 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
242 output$network <- renderCytoscape({
243 strategy <- input$layoutcytoscape

244 printf("about to sendCustomMessage , layout: %s", strategy)
245 if(strategy == "cola"){
246 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
247 node_style(’background -color’ = ’data(node_color)’) %>%
248 node_style(’shape’ = ’data(node_shape)’) %>%
249 node_style(’width’ = ’data(node_width)’) %>%
250 node_style(’height’ = ’data(node_height)’) %>%
251 cola_layout(avoidOverlap = TRUE) %>%
252 panzoom()
253 }else{
254 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
255 node_style(’background -color’ = ’data(node_color)’) %>%
256 node_style(’shape’ = ’data(node_shape)’) %>%
257 node_style(’width’ = ’data(node_width)’) %>%
258 node_style(’height’ = ’data(node_height)’) %>%
259 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
260 panzoom()
261 }
262 })
263 }else{
264 if(input$mapping_question == "Yes, a colour gradient."){
265 if(strategy == "cola"){
266 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
267 #the first argument , previous = sign , of node_style is a recognised cytoscape node style name
268 #the second argument is the label given in the dataframe
269 node_style(’background -color’ = paste0(’mapData(gradient ,’,
270 as.character(input$range_color_numeric[1]),’,’,
271 as.character(input$range_color_numeric[2]),’,’,
272 input$range_color1 ,’,’,
273 input$range_color2 ,’)’)) %>%
274 node_style(’shape’ = ’data(node_shape)’) %>%
275 node_style(’width’ = ’data(node_width)’) %>%
276 node_style(’height’ = ’data(node_height)’) %>%
277 cola_layout(avoidOverlap = TRUE) %>%
278 panzoom()
279 }else{
280 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
281 node_style(’background -color’ = paste0(’mapData(gradient ,’,
282 as.character(input$range_color_numeric[1]),’,’,
283 as.character(input$range_color_numeric[2]),’,’,
284 input$range_color1 ,’,’,
285 input$range_color2 ,’)’)) %>%
286 node_style(’shape’ = ’data(node_shape)’) %>%
287 node_style(’width’ = ’data(node_width)’) %>%
288 node_style(’height’ = ’data(node_height)’) %>%
289 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
290 panzoom()
291 }
292 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
293 output$network <- renderCytoscape({
294 strategy <- input$layoutcytoscape
295 printf("about to sendCustomMessage , layout: %s", strategy)
296 if(strategy == "cola"){
297 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
298 node_style(’background -color’ = paste0(’mapData(gradient ,’,
299 as.character(input$range_color_numeric[1]),’,’,
300 as.character(input$range_color_numeric[2]),’,’,
301 input$range_color1 ,’,’,
302 input$range_color2 ,’)’)) %>%
303 node_style(’shape’ = ’data(node_shape)’) %>%
304 node_style(’width’ = ’data(node_width)’) %>%
305 node_style(’height’ = ’data(node_height)’) %>%
306 cola_layout(avoidOverlap = TRUE) %>%
307 panzoom()
308 }else{
309 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
310 node_style(’background -color’ = paste0(’mapData(gradient ,’,
311 as.character(input$range_color_numeric[1]),’,’,
312 as.character(input$range_color_numeric[2]),’,’,
313 input$range_color1 ,’,’,
314 input$range_color2 ,’)’)) %>%
315 node_style(’shape’ = ’data(node_shape)’) %>%
316 node_style(’width’ = ’data(node_width)’) %>%
317 node_style(’height’ = ’data(node_height)’) %>%
318 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
319 panzoom()
320 }
321 })
322 }else{
323 if(strategy == "cola"){
324 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
325 #the first argument , previous = sign , of node_style is a recognised cytoscape node style name
326 #the second argument is the label given in the dataframe
327 node_style(’background -color’ = ’data(node_color)’) %>%
328 node_style(’shape’ = ’data(node_shape)’) %>%
329 node_style(’width’ = paste0(’mapData(gradient ,’,
330 as.character(input$range_size_numeric[1]),’,’,
331 as.character(input$range_size_numeric[2]),’,’,
332 input$range_size[1],’,’,
333 input$range_size[2],’)’)) %>%
334 node_style(’height’ = paste0(’mapData(gradient ,’,
335 as.character(input$range_size_numeric[1]),’,’,
336 as.character(input$range_size_numeric[2]),’,’,
337 input$range_size[1],’,’,
338 input$range_size[2],’)’)) %>%
339 cola_layout(avoidOverlap = TRUE) %>%

340 panzoom()
341 }else{
342 plotInput <- cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive())

%>%
343 node_style(’background -color’ = ’data(node_color)’) %>%
344 node_style(’shape’ = ’data(node_shape)’) %>%
345 node_style(’width’ = paste0(’mapData(gradient ,’,
346 as.character(input$range_size_numeric[1]),’,’,
347 as.character(input$range_size_numeric[2]),’,’,
348 input$range_size[1],’,’,
349 input$range_size[2],’)’)) %>%
350 node_style(’height’ = paste0(’mapData(gradient ,’,
351 as.character(input$range_size_numeric[1]),’,’,
352 as.character(input$range_size_numeric[2]),’,’,
353 input$range_size[1],’,’,
354 input$range_size[2],’)’)) %>%
355 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
356 panzoom()
357 }
358 saveWidget(plotInput , "temp.html", selfcontained = FALSE)
359 output$network <- renderCytoscape({
360 strategy <- input$layoutcytoscape
361 printf("about to sendCustomMessage , layout: %s", strategy)
362 if(strategy == "cola"){
363 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
364 node_style(’background -color’ = ’data(node_color)’) %>%
365 node_style(’shape’ = ’data(node_shape)’) %>%
366 node_style(’width’ = paste0(’mapData(gradient ,’,
367 as.character(input$range_size_numeric[1]),’,’,
368 as.character(input$range_size_numeric[2]),’,’,
369 input$range_size[1],’,’,
370 input$range_size[2],’)’)) %>%
371 node_style(’height’ = paste0(’mapData(gradient ,’,
372 as.character(input$range_size_numeric[1]),’,’,
373 as.character(input$range_size_numeric[2]),’,’,
374 input$range_size[1],’,’,
375 input$range_size[2],’)’)) %>%
376 cola_layout(avoidOverlap = TRUE) %>%
377 panzoom()
378 }else{
379 cytoscape(nodes = style_custom_nodes_reactive_gradient(), edges = style_edges_reactive()) %>%
380 node_style(’background -color’ = ’data(node_color)’) %>%
381 node_style(’shape’ = ’data(node_shape)’) %>%
382 node_style(’width’ = paste0(’mapData(gradient ,’,
383 as.character(input$range_size_numeric[1]),’,’,
384 as.character(input$range_size_numeric[2]),’,’,
385 input$range_size[1],’,’,
386 input$range_size[2],’)’)) %>%
387 node_style(’height’ = paste0(’mapData(gradient ,’,
388 as.character(input$range_size_numeric[1]),’,’,
389 as.character(input$range_size_numeric[2]),’,’,
390 input$range_size[1],’,’,
391 input$range_size[2],’)’)) %>%
392 cytoscape::layout(strategy , avoidOverlap = TRUE) %>%
393 panzoom()
394 }
395 })
396 }
397 }
398 node <- NULL
399 node_i <- NULL
400 }}else{ #exactly the same but with the data from a built query
401 ...
402 }
403 })
404 ...
405 }

Listing B.21: Code to apply the overlays to the network.

B.4.2.4. Saving the results: image and zip folder.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Saving the results from overlaying ######
5 observe({ #saving an image in png format
6 output$ggsave_graph <- downloadHandler(
7 filename = function() {ifelse(input$imagenameStyle=="", paste0("network",format(Sys.time(), "%m%d_%H%M"),".png")

, #png
8 paste0(input$imagenameStyle ,".png"))},
9 content = function(file) {

10 webshot("temp.html", file = file , cliprect = "viewport") #screenshot of the temporal html file saved with the
function saveWidget()

11 #as I am using this function I cannot save in vectorial format (EPS)
12 }
13)
14 })
15
16 observe({#saving a zip folder with the results (csv of the previous step), customization (csv), ids (csv), network (

json)
17 if(identical(modality(),NULL)){
18 output$downloadstyle <- downloadHandler(

19 filename <- function() { #filename of the zip and extension
20 ifelse(input$filenameStyle=="",paste0("workflow_final",format(Sys.time(), "%m%d_%H%M"),".zip"), # default

name of the zip
21 paste0(input$filenameStyle ,".zip"))
22 },
23 content <- function(file) {
24 temp <- tempdir() # Set a temp dir
25 setwd(tempdir()) #the content is written to the temp dir
26 # Create the files
27 if(is.null(values$dfWorking)){
28 results_table_path <- paste0("results_",format(Sys.time(), "%m%d_%H%M"),".csv") #month day _ hour minute
29 customization_table_path <- paste0("customization_",format(Sys.time(), "%m%d_%H%M"),".txt")
30 ids_path <- paste0("ids_",format(Sys.time(), "%m%d_%H%M"),".csv")
31 json_path <- paste0("network_",format(Sys.time(), "%m%d_%H%M"),".json")
32
33 utils::write.csv(new_df(), results_table_path , row.names = TRUE)
34 write("", customization_table_path)
35 utils::write.csv(data.frame(nodes=input$id_nodes , edges=input$id_edges), ids_path)
36 write(dataFramesToJSON(style_edges_reactive(), style_custom_nodes_reactive_gradient()),json_path)
37 # Create a zip of the data
38 zip::zipr(zipfile = file , files = c(results_table_path ,
39 customization_table_path ,
40 ids_path , json_path))
41 }else{ #overlaying by the user
42 results_table_path <- paste0("results_",format(Sys.time(), "%m%d_%H%M"),".csv")
43 customization_table_path <- paste0("customization_",format(Sys.time(), "%m%d_%H%M"),".csv")
44 ids_path <- paste0("ids_",format(Sys.time(), "%m%d_%H%M"),".csv")
45 json_path <- paste0("network_",format(Sys.time(), "%m%d_%H%M"),".json")
46
47 utils::write.csv(new_df(), results_table_path , row.names = TRUE)
48 dt <- values$dfWorking
49 dt <- unique(dt[!is.null(dt[,"Parameter"]) ,])
50 utils::write.csv(dt, customization_table_path , row.names = TRUE)
51 utils::write.csv(data.frame(nodes=input$id_nodes , edges=input$id_edges), ids_path)
52 write(dataFramesToJSON(style_edges_reactive(), style_custom_nodes_reactive_gradient()),json_path)
53 # Create a zip of the data
54 zip::zipr(zipfile = file , files = c(results_table_path , customization_table_path , ids_path , json_path))
55 }
56 },
57 contentType = "application/zip")
58 }else{ #the same but for the builder path
59 output$downloadstyle <- downloadHandler(
60 filename <- function() {
61 ifelse(input$filenameStyle=="",paste0("workflow_final",format(Sys.time(), "%m%d_%H%M"),".zip"), # default

name of the zip
62 paste0(input$filenameStyle ,".zip"))
63 },
64 content <- function(file) {
65 temp <- tempdir() # Set a temp dir
66 setwd(tempdir())
67 # Create the files
68 if(is.null(values_builder$dfWorking_builder)){
69 results_table_path <- paste0("results_",format(Sys.time(), "%m%d_%H%M"),".csv")
70 customization_table_path <- paste0("customization_",format(Sys.time(), "%m%d_%H%M"),".txt")
71 ids_path <- paste0("ids_",format(Sys.time(), "%m%d_%H%M"),".csv")
72 json_path <- paste0("network_",format(Sys.time(), "%m%d_%H%M"),".json")
73
74 utils::write.csv(new_df_builder(), results_table_path , row.names = TRUE)
75 write("", customization_table_path)
76 utils::write.csv(data.frame(nodes=input$id_nodes , edges=input$id_edges), ids_path)
77 write(dataFramesToJSON(style_edges_reactive_builder(), style_custom_nodes_reactive_builder()),json_path)
78 # Create a zip of the data
79 zip::zipr(zipfile = file , files = c(results_table_path ,
80 customization_table_path ,
81 ids_path , json_path))
82 }else{
83 results_table_path <- paste0("results_",format(Sys.time(), "%m%d_%H%M"),".csv")
84 customization_table_path <- paste0("customization_",format(Sys.time(), "%m%d_%H%M"),".csv")
85 ids_path <- paste0("ids_",format(Sys.time(), "%m%d_%H%M"),".csv")
86 json_path <- paste0("network_",format(Sys.time(), "%m%d_%H%M"),".json")
87
88 utils::write.csv(new_df_builder(), results_table_path , row.names = TRUE)
89 dt <- values_builder$dfWorking_builder
90 dt <- unique(dt[!is.null(dt[,"Parameter"]) ,])
91 utils::write.csv(dt, customization_table_path , row.names = TRUE)
92 utils::write.csv(data.frame(nodes=input$id_nodes , edges=input$id_edges), ids_path)
93 write(dataFramesToJSON(style_edges_reactive_builder(), style_custom_nodes_reactive_builder()),json_path)
94 # Create a zip of the data
95 zip::zipr(zipfile = file , files = c(results_table_path , customization_table_path , ids_path , json_path))
96 }
97 },
98 contentType = "application/zip")
99 }

100 })
101
102 ...
103 }

Listing B.22: Code to save the results from the Overlay tab.

B.4.3. Saved Networks tab

B.4.3.1. Unzip and display saved networks.

1 #Server: where the data is processed -----
2 server <- function(input , output , session){
3 ...
4 ###### Unzip and display saved Networks ######
5 observeEvent(input$unzip ,{
6 filename_glob <- "*0"
7 output_dir = tempdir() #dir where saves unzip data
8 setwd(tempdir())
9 # Unzip data in output_dir

10 unzip <- utils::unzip(input$file$datapath , list = TRUE , overwrite = TRUE , exdir = output_dir)
11 ls_content <- unzip$Name
12 print(ls_content)
13 # Displaying the results from saved queries in a data table
14 output$resultstable_save <- renderDT({
15 results <- datatable(as.data.frame(read.csv(ls_content[1])), fillContainer = TRUE , rownames = FALSE , options =

list(
16 pageLength = 25, autoWidth = TRUE))
17 results
18 })
19 if(str_sub(ls_content[2],-1)=="t"){ #if the format from the second file is .txt (last chr is t) the network has

not got overlays
20 df <- NULL
21 }else{
22 df <- read.csv(ls_content[2])
23 }
24 output$network_saved <- renderCytoscape({
25 cytoscape(nodes = style_nodes_reactive(read.csv(ls_content[1]),df, read.csv(ls_content[3])$nodes , read.csv(ls_

content[3])$edges),
26 edges = style_edges_reactive_func(read.csv(ls_content[1]),read.csv(ls_content[3])$nodes , read.csv(ls_

content[3])$edges)) %>%
27 node_style(’background -color’ = ’data(node_color)’) %>%
28 node_style(’shape’ = ’data(node_shape)’) %>%
29 node_style(’width’ = ’data(node_width)’) %>%
30 node_style(’height’ = ’data(node_height)’) %>%
31 cola_layout(avoidOverlap = TRUE) %>% #by default cola layout
32 panzoom()
33 })
34 })
35 ...
36 }

Listing B.23: Code to unzip and display saved networks.

InterMineR Cytoscape Interface

InterMine
University of Cambridge

Celia Sánchez Laorden
csanchla8@alumnes.ub.edu
csl.celiasanchez@gmail.com

Source: InterMineR Cytoscape Interface is on Github

April, 2021

This interface wants to be a guide to run queries and interpret them with
the intuitive Cytoscape visualizations without prior software experience. It
facilitates understanding and communication of relevant relationships be-
tween different biological Data Classes.

1

B.5. User guide

Contents

1 Requirements 2

2 Capabilities 3

3 Basic Usage 3
3.1 Overview . 4
3.2 1.1 Templates tab . 4
3.3 1.2 Query Builder tab . 5
3.4 2. Run your query tab . 6
3.5 3. Visualize your results tab 6
3.6 4. Overlay additional data tab 7
3.7 Saved Networks tab . 8

4 Source Code 9

1 Requirements

InterMineR Cytoscape is an interface created with Shiny. All code is available
from: Github. To run the Shiny app, first, make sure that you have installed:

1. R Studio version 4.0.3 or above.

2. All the files and the "www" folder from the GitHub repository. Unzip
the folder. Set your working directory to the unzipped folder once in
R Studio (see setwd function).

3. All of the packages from the Packages.R file in R Studio. In order to
install them correctly, run the installation for each package in turn.

Open R Studio, open the file app.R and open the file workspace_app.RData.
Then, press "RunApp".

2

2 Capabilities

Using this app you will be able to:

1. Run queries using any template from all registered InterMine instances
in one place.

2. Advanced users can use a flexible query interface to construct their own
data mining queries.

3. Display and export the results in a table.

4. A set of network visualization tools from Cytoscape domains enrich the
interpretation of the results.

5. Further options allow customization of the Cytoscape Networks.

6. Store your visualizations in JSON format and display saved Networks.

3 Basic Usage

The InterMineR Cytoscape Interface divides the tasks into seven tabs:

• Home: contains a short walk-trough the app.

• Create your query: here you can select either Templates, which
allows you to select predefined queries. Or Query Builder, which
provides a tool to flexibly create your own queries.

• Run your query: displays the results from the query previously cre-
ated.

• Visualize your results: is a Cytoscape Network viewer.

• Overlay additional data: is the tool to style the Network chart.

• Saved Networks: enables you to visualize the results you have saved
from past queries.

3

3.1 Overview

On the left side of the screen there is a sidebar menu, where in addition
to the tab menu, a select list enables you to choose a registered InterMine
instance. In the upper right corner, there is an information button that takes
you to the source project in GitHub and redirects you to a place where you
can expose any issue you find.

In each tab panel, you will find a help button. When you click to the
question mark ? icon step-by-step instructions will be displayed. Some hints
are also visible by hovering your mouse over the buttons.

Figure 1: InterMineR Cytoscape Interface Home tab.

Each tab will be explained in more detail below:

3.2 1.1 Templates tab

You first will need to select a query from the list of templates. At this point,
you will see the predefined constraints of the template in the main panel
of the tab. You can change the value by default and this way modify the
constraints.

4

Figure 2: Pre-defined constraint for the Template Protein-->Interactions
from HumanMine.

A summary table of the constraints selected is displayed. Each time you
select a new template query, all the modifications are deleted, and you can
start again. To go to the next section, click Go to Results at the lower right
corner.

3.3 1.2 Query Builder tab

The Query Builder modality is only encouraged for experienced users. To
start building a query from scratch, first, you will need to define a Data
Class. Then, you must set which attributes you want to see in the results.
This also defines the type of sorting which will be used to order the retrieved
data.frame. At the bottom of the page, you can change the predefined choice
of ordering and select if you want to sort the results in ascending or descend-
ing order. Setting a constraint for the first Data Class is optional, but take
into account that at some point you will need to define one. At this point, if
you are defining a constraint you can type multiple values separated by com-
mas. Just a clarification: the constraint operator and value(s) that you enter
in the boxes below your first Data Class choice run against this class. If you
press the Constraints button you can set a constraint against an attribute
from the first Data Class. You can only select one attribute, otherwise you
will get an error.

Press the Set button if you want to add a second level, dependent on
your first Data Class choice, and overlay extra data. In the consecutive
steps, one checkbox tree is displayed for the data type to be returned and
another one for data types to set constraints. In the first tree, Type of data

to be returned, you can select the data you want to see in the results table.
If you want to set a third level, pressing the Set button below the trees,

5

you could need to select the data types in the second level that you do not
want to see displayed in the results table. Do not worry, you can delete these
data types after setting the third and consecutive levels pressing Set Query

button. When you press this button, a emergent window will appear with
all the values that are going to be seen in the results table. By selecting the
ones you want to remove and pressing Delete Rows button you will get rid
off any undesired data type.

Once you have achieved the 3rd level, you can press the Overlay extra

data button to set two more levels of extra data into your query. Pressing
Set Query button, apart from removing selected values, will show you a
summary table with the constraints you have defined. If you have built a
query that can be run against the InterMine instance you will be able to
press in the lower right corner the Go to Results button that will take you
to the next section.

3.4 2. Run your query tab

In this section, a table containing the data which were retrieved from the
InterMine instance is displayed. You will need to select the Set Nodes and

Edges button to select the Id and the Source for the Cytoscape Network
Visualization. The Id and Source need to be different. At this point, you
may also want to define the Node Attributes to then be able to manipulate
the network chart according to filtering criteria given by these attributes.

3.5 3. Visualize your results tab

Here, you can set different visualization and filter options. First, you can
choose different layouts from the Select Layout list. Specific nodes from
your network can be selected by attribute or ID, using buttons at the left of
the page.

Buttons below the network allow various actions based on the nodes se-
lected: remove selected (you can go back and display all the initial nodes
pressing the Show All button), zoom selected, reset the view or select the
first neighbour of a node or a selection of nodes. In addition you can invert
the selection, unselect nodes and display a list of names from the selected
nodes.

6

Figure 3: Caption of the Visualize your results tab.

3.6 4. Overlay additional data tab

In this last tab, you can easily style the network chart. In the Node’s
body menu first, select which parameter you want to customize using Set

Parameter. Second, you need to define the value for the parameter. You can
either set the node(s) to customize by their ID or by an attribute. You can
select one of the attributes set in the Run Query Section to filter the cus-
tomization. You must select the Value for the attribute if you have chosen
this way. Each time you describe a new feature for the network do not forget
to do double click to the Customize the Network! button. Pressing History

of changes button you can see the changes you have made and delete some
of them by pressing Delete Rows.

The newest feature added is the continuous-to-continuous mapping of
attributes. You can apply a gradient, of node size or colour, to the node’s
attribute that you desired. With this feature, you will obtain nice network
where numerical information is easily understood. You must select a node
attribute from the ones chosen in the Run Query tab. Then, you can specify
the range of values within the values of the attribute to map and choose
between size or colour gradient. The size gradient can be set between 10 and
200 in pixels at zoom 1.

Finally, you can save your results as a static image, in PNG format, using

7

Figure 4: Caption of the Overlay additional data tab. The background colour
of the nodes corresponding to genes that in the interaction have a prey role
is set to orange and for the ones with a bait role to blue.

the Save as PNG option. Saved Networks can be uploaded in the Saved
Networks tab. If no name is provided for the image a default name will
be given. In addition a ZIP folder with the files for an interactive network
display can be saved using the Save as ZIP option in the Style your network
charts tab. Again, if no name is provided a default name will be given. The
ZIP folder will contain the results of the query in a CSV file, two CSV files
with the basic components and the modifications made to the Network and
a JSON file of the Network.

3.7 Saved Networks tab

In this last tab, you can display previously saved networks. You will need to
press Browse... and navigate to find the zip folder you have saved in the tab
Overlay additional data. Then, you will need to press Unzip files and
the results of the query in a table and the network chart will be displayed.

8

Figure 5: Caption of the Saved Networks tab displaying the example Network
chart shown in Figure 4.

4 Source Code

InterMineR Cytoscape Interface is open source and may be downloaded and
forked on Github. Pull Requests are welcomed!

9

APPENDIX C. USE-CASES FOR THE
INTERMINER-CYTOSCAPE SHINY INTERFACE

C.1. HumanMine use-case.

C.1.1. Workflow A:

Figure C.1: Global view of the Template Queries tab.

Figure C.2: Choosing the Template Query.

56

Figure C.3: Summary of the constraints defined in the Template Query.

Figure C.4: Table of results and selection of nodes, edges and nodes’ attributes.

C.1.2. Workflow B:

Figure C.5: Initial view of the Visualize your results tab.

Figure C.6: Cola layout and saving an image of the entire network.

Figure C.7: "Zoom selected" view of the node OMIM:125853 and first neighbours.

Figure C.8: "Zoom selected" view of the first neighbours of the previous selection C.7.

Figure C.9: Invert selected of the previous selection C.8.

Figure C.10: Remove selected of the previous selection C.9.

Figure C.11: Show all the nodes.

Figure C.12: First neighbours of OMIM:125853 network saved as an image.

Figure C.13: The directory where the image C.12 has been saved.

(a) Original.

(b) Filtered by First Neighbours.

Figure C.14: Networks of the Workflow A.

Figure C.15: Initial view of the Overlay additional data tab.

(a) Background-colour by ID. (b) Background-color by attribute.

Figure C.16: Customization of the genes related with Diabetes Mellitus Type 2.

Figure C.17: Results of the orange background-colour filter C.16.

Figure C.18: Customization of the genes related with Diabetes Mellitus Type 1.

Figure C.19: Saving the customized network.

Figure C.20: Displaying the saved network C.19 in the Saved Workflows tab.

Figure C.21: Query Builder view of first level data class and the constraint for
Disease.name.

Figure C.22: Query Results view and selection of target and source data.

Figure C.23: Cytoscape Network Viewer of the results.

Figure C.24: Size gradient of expression score for the genes expressed in Diabetes
Mellitus Type 1.

C.1.2.1. Gene HNF1A:

Figure C.25: Second constraint in the Query Builder for Gene.symbol.

Figure C.26: Summary of constraints.

Figure C.27: Query Results view and selection of target and source data.

Figure C.28: Background-colour overlaying.

Figure C.29: History of Changes.

(a) HNF1A in Diabetes Mellitus Type 1.

(b) HNF1A in Diabetes Mellitus Type 2.

Figure C.30: Size gradient of expression score for different tissues.

C.1.2.2. Gene IL6:

Figure C.31: Summary of constraints.

Figure C.32: Size gradient of expression score for the IL6 gene.

C.1.2.3. Gene ITPR3:

Figure C.33: Summary of constraints.

Figure C.34: Size gradient of expression score for the ITPR3 gene.

C.1.2.4. Gene PTPN22:

Figure C.35: Summary of constraints.

Figure C.36: Size gradient of expression score for the PTPN22 gene.

C.2. CovidMine use-case.

Figure C.37: Summary of constraints of the template query modified (new value for
date).

Figure C.38: Query Results and selection of target and source data.

Figure C.39: The node 2021-04-14 and its first neighbours are selected.

Figure C.40: Inverted selection of C.39.

Figure C.41: Removing the nodes from C.40 selection and saving the results.

Figure C.42: Size gradient of new confirmed Covid-19 cases on 14-04-2021.

C.2.1. Countries without continents nodes.

Figure C.43: Selection of continents.

Figure C.44: Removing the nodes from C.43 and saving the results.

Figure C.45: Size gradient of new confirmed Covid-19 cases on 14-04-2021 without
continents.

(a) New confirmed Covid-19 cases.

(b) New deaths Covid-19 cases.

Figure C.46: Colour gradient (date: 14-04-2021).

C.2.2. Only continents.

(a) Total confirmed Covid-19 cases. (b) Total deaths Covid-19 cases.

(c) New confirmed Covid-19 cases. (d) New deaths Covid-19 cases.

Figure C.47: Size gradients (date: 14-04-2021).

Figure C.48: Size gradient of new confirmed Covid-19 cases on 14-04-2021 in the
continents and background-colour overlaying seen in the History of Changes window.

Figure C.49: Displaying the network saved in C.48.

APPENDIX D. SUPPLEMENTARY GRAPHICS

´

D.1. Scan of the Market for Biological Data-Warehouses

BioMart En-
sembl

EuPathDB BioCyc InterMine

Databases 4 1,125 17,043 34

Content

Genomics

Transcriptomics

Proteomics

Metabolomics

Organism

Eukaryote

Humans

Prokaryote

Viruses

Web Servers Single 13 14 34

Personal Site

Query

Templates

Builder By Filters
and At-
tributes

Automatic
Code Genera-
tion

Superposition Strategies
can be cre-
ated by
adding, sub-
tracting,
joining, in-
tersecting, or
collocating
the results of
subsequent
searches.

Advanced
searches
combining
multiple
organisms
or types of
objects.

APIs Pearl, Java Java, Perl,
Common
Lisp lan-
guages

HTTP, Perl,
Python,
Ruby,
JavaScript, R

R packages

Visual Analysis Tools

Table D.1: Comparison between BioMart, EuPathDB, BioCyc and
Intermine.

83

D.2. Improvements of the core InterMineR package.

Figure D.1: Auxiliar scheme of the methods and classes to implement.

D.3. Work Breakdown Structure

Figure D.2: Work Breakdown Structure.

	Project Origin and Motivation
	Introduction
	Scope
	Span
	Description of the span of the project
	Requirements of the project
	Limitations of the project
	Deliverables of the project
	Criterion of acceptation of the results
	Restrictions of the project
	Initial known risks

	Background
	State of the art
	InterMine as a Data Warehouse
	Setting up an InterMine: making data FAIR
	Cytoscape: graph analysis software

	Project Environment

	Scan of the Market
	Design Engineering
	Improvements of the core InterMineR R package
	Preliminary Project Study
	Proposed Solution

	Interfacing with Cytoscape
	Preliminary Project Study
	Proposed Solution

	Tutorials
	Preliminary Project Study
	Proposed Solution

	Documentation
	Preliminary Project Study
	Proposed Solution

	Detail Engineering
	Technologies involved
	Design
	Improvements of the core of InterMineR
	Interfacing InterMineR and Cytoscape with Shiny
	Set Query Tab
	Run your Query Tab
	Visualize your Results Tab
	Overlay Additional Data Tab
	Saved Networks tab
	Customer Support
	GitHub Repository

	Results
	Improvements of the core of InterMineR
	Use cases for the InterMineR-Cytoscape Shiny Interface

	Organization
	Technique pre-feasibility study
	Schedule of Execution

	Economic pre-feasibility study
	Cost study

	Environmental Impact
	License
	 Future Extensions
	Conclusions
	Bibliography
	Task 1: Improving InterMineR
	Classes
	ListManager-class.R
	webservice-class.R
	InterMineR-class.R

	Methods and Functions
	initInterMine
	list_manager
	ListManager-methods.R

	Documentation
	ListManager-class.Rd
	ListManager-class documentation rendered to HTML.

	Results

	Task 2: Shiny Interface
	Welcoming message
	Interface simplified code
	Simplified code of the app.R script structure
	Simplified code of the tab dashboard structure of:

	InterMineR fragments of code
	Selecting the InterMine and getting the data model: initInterMine, listMines, getModel
	Get the information of the templates pre-defined in InterMine and get the query obtained in a template: getTemplates, getTemplatesQuery
	Constraints: setConstraints
	Initialize a new InterMineR query or modify an existing list query: setQuery
	Get the summary of constraints: summary
	Get the results: runQuery

	Cytoscape fragments of code
	Visualize tab
	Overlay tab
	Saved Networks tab

	User guide

	Use-cases for the InterMineR-Cytoscape Shiny Interface
	HumanMine use-case.
	Workflow A:
	Workflow B:

	CovidMine use-case.
	Countries without continents nodes.
	Only continents.

	Supplementary graphics
	Scan of the Market for Biological Data-Warehouses
	Improvements of the core InterMineR package.
	Work Breakdown Structure

